Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Вольфрам что это такое


Вольфрам

  Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания. Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках. Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

КЛАССИФИКАЦИЯ

ФИЗИЧЕСКИЕ СВОЙСТВА

ОПТИЧЕСКИЕ СВОЙСТВА

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

mineralpro.ru

Вольфрам металл. Свойства вольфрама. Применение вольфрама

Свойства вольфрама

Вольфрам – это металл. Его нет в воде морей, нет в воздухе, да и в земной коре всего 0,0055%. Таков вольфрам, элемент, стоящий на 74-ой позиции в таблице Менделеева. Для промышленности его «открыла» Всемирная выставка во французской столице. Она состоялась в 1900-ом году. В экспозиции была представлена сталь с добавлением вольфрама.

Состав был настолько тверд, что мог разрезать любой материал. Сплав оставался «непобедимым» даже при температурах в тысячи градусов, поэтому был назван красностойким. Производители разных государств, посетившие выставку, взяли разработку на вооружение. Производство лигированной стали приобрело мировой масштаб.

Интересно, что сам элемент обнаружили еще в 18-ом веке. В 1781-ом Швед Шеелер проводил опыты с минералом тунгстен. Химик решил поместить его в азотную кислоту. В продуктах разложения ученый и обнаружил неизвестный металл серого цвета с серебристым отливом. Минерал, над которым проводились опыты, позже переименовали в шеелит, а новый элемент назвали вольфрам.

Однако, на изучение его свойств ушло немало времени, поэтому и достойное применение металлу нашли гораздо позже. Название же выбрали сразу. Слово вольфрам существовало и раньше. Испанцы называли так один из минералов, встречавшихся на месторождениях страны.

В состав камня, действительно входил элемент №74. Внешне металл порист, как будто вспенен. Поэтому пришлась кстати еще одна аналогия. В немецком языке вольфрам буквально означает «волчья пена».

Температура плавления металла соперничает с водородом, а он – самый стойкий к температурам элемент. Поэтому, и установить показатель размягчения вольфрама не могли целых сто лет. Не было печей, способных накаляться до нескольких тысяч градусов.

Когда же «выгоду» серебристо-серого элемента «раскусили», его начали добывать в промышленных масштабах. Для выставки 1900-го года, металл извлекли по старинке с помощью азотной кислоты. Впрочем, фольфрам и сейчас так добывают.

Добыча вольфрама

Чаще всего, сначала получают из отходов руд триоксид вещества. Его, при 700 градусах обрабатывают, получая чистый металл в виде пыли. Чтобы размягчить частицы приходится прибегать как раз к водороду. В нем-то вольфрам переплавляют при трех тысячах градусов Цельсия.

Сплав идет на резцы, труборезы, фрезы. Инструменты для обработки металлов с применением вольфрама повышают точность изготовления деталей. При воздействии на металлические поверхности высоко трение, а это значит, что рабочие плоскости сильно нагреваются. Режущие и полирующие станки без элемента №74 могут и сами оплавится. Это делает срез неточным, несовершенным.

Вольфрам не только сложно расплавить, но и обработать. В шкале твердости Мооса металл занимает девятую позицию. Столько же баллов у корунда, из крошек которого делают, к примеру, нождачку. Тверже только алмаз. Поэтому, с его помощью вольфрам и обрабатывают.

Применение вольфрама

«Непоколебимость» 74-го элемента привлекает ювелиров. Изделия из сплавов с серо-серебристым металлом невозможно поцарапать, согнуть, поломать, если, конечно, не скрести по поверхности кольца или браслета теми же бриллиантами.

У ювелирных украшений из фольфрама есть и еще один бесспорный плюс. Они не вызывают аллергических реакций, в отличие от золота, серебра, платины и, уж тем более, их сплавов с цинком или палладием. Для украшений используют карбид вольфрама, то есть его соединение с углеродом.

Оно признано самым твердым сплавом в истории человечества. Его отполированная поверхность прекрасно отражает свет. Ювелиры называют ее «серым зеркалом».

Кстати, ювелирных дел мастера обратили внимание на вольфрам после того, как из этого вещества в середине 20-го столетия стали изготавливать сердцевины пуль, снарядов и пластины для бронежилетов.

Жалобы клиентов на ломкость высших проб золота и серебряных украшений, заставили ювелиров вспомнить о новом элементе и попытаться его применить в своей отрасли. К тому же, цены на золото стали колебаться. Вольфрам стал альтернативой желтому металлу, который перестали воспринимать, как предмет капиталовложения.

Будучи драгоценным металлом, вольфрам стоит немалых денег. За килограмм просят не меньше 50-ти долларов на оптовом рынке. В год мировая промышленность затрачивает 30 тысяч тонн элемента №74. Более 90% поглощает металлургическая отрасль.

Только из вольфрама изготавливают контейнеры для хранения отходов ядерного производства. Металл не пропускает губительные лучи. Редкий элемент добавляют в сплавы для изготовления хирургических инструментов.

То, что не идет на металлургические цели, забирает химическая промышленность. Соединения вольфрама с фосфором, к примеру, — основа лаков и красок. Они не разрушаются, не тускнеют от солнечных лучей.

А раствор вольфромата натрия не поддается влаге и огню. Становится ясно, чем пропитывают водонепроницаемые и огнеупорные ткани для костюмов водолазов и пожарных.

Месторождения вольфрама

В России несколько месторождений вольфрама. Они расположены на Алтае, Дальнем Востоке, Северном Кавказе, Чукотки и в Бурятии. За пределами страны металл добывают в Австралии, США, Боливии, Португалии, Южной Кореи и КНР.

В Поднебесной даже есть легенда о молодом исследователе, который приехал в Китай искать оловянный камень. Студент поселился в одном из домов Пекина.

После бесплодных поисков, парень любил послушать рассказы дочери хозяина жилища. В один из вечеров она поведала историю темных камней, из которых была сложена домашняя печь. Оказалось, что глыбы падают со скалы на задний двор строения. Так, студент не нашел олово, зато, отыскал вольфрам.

Загрузка...

tvoi-uvelirr.ru

Вольфрам: свойства и марки, области применения и производство тугоплавкого вольфрама, продукция

Вольфрам является тугоплавким металлом. У него есть свои разновидности марок, каждая из которых имеет особенности. Этот элемент в периодической таблице Менделеева находится под 74 номером и имеет светло-серый цвет. Его температура плавления составляет 3380 градусов. Основными его свойствами являются коэффициент линейного расширения, электрическое сопротивление, температура плавления и плотность.

Вольфрам имеет свои механические и физические свойства, а также несколько разновидностей марок.

К физическим свойствам относят:

Механические свойства:

Отличается этот металл маленькой скоростью испарения даже при 2 тыс. градусов и очень большой точкой кипения — 5900 градусов. Свойствами, которые ограничивают область использования этого материала, являются малое сопротивление окислению, высокая склонность к ломкости и высокая плотность. На вид он напоминает сталь. Используется для того, чтобы изготавливать сплавы высокой прочности. Обработать его можно только после нагревания. Температура нагрева зависит от того, какой именно метод обработки вы собираетесь проводить.

Вольфрам имеет такие марки:

  1. МВ — сплав вольфрама и молибдена. Повышается прочность молибдена при сохранении пластичности после обжига.
  2. ВРН — вольфрам без присадки. В нём допустимо повышенное содержание примесей.
  3. ВР — сплав рения и вольфрама.
  4. ВЛ, ВИ, ВТ — вольфрам с присадкой окиси лантана, иттрия и тория соответственно. Повышают эмиссионные свойства вольфрама.
  5. ВМ — вольфрам с ториевой и кремнещелочной присадками. Повышает температуру рекристаллизации и прочность при высоких температурах.
  6. ВА — вольфрам с алюминиевой и кремнещелочной присадками. Увеличивает температуру первичной рекристаллизации, формоустойчивость при больших температурах, а также прочность после отжига.
  7. ВЧ — чистый без присадок.

Область применения

Из-за своих уникальных свойств вольфрам получил широкое применение. В промышленности он применяется в чистом виде и в сплавах.

Основными областями применения являются:

Этот материал относят к редким металлам. Для него характерны сравнительно небольшие объёмы потребления и производства, а также в земной коре малая распространённость. Никакой из редких металлов не получают восстановлением из сырья. Изначально оно перерабатывается в соединение химическое. А ещё любая редкометаллическая руда перед переработкой подвергается дополнительному обогащению.

Выделяют три главные стадии для получения редкого металла:

  1. Разложение руды. Извлекаемый металл отделяется от основной массы перерабатываемого сырья. Он концентрируется в осадке или растворе.
  2. Получение химического чистого соединения. Его выделение и очистка.
  3. Из полученного соединения выделяют металл. Так получают чистые материалы без примесей.

В процессе получения вольфрама тоже есть несколько стадий. Исходное сырьё — шеелит и вольфрамит. Обычно в их составе содержится от 0,2 до 2% вольфрама.

  1. Обогащение руды производится при помощи электростатической или магнитной сепарации, флотации, гравитации. В итоге получают концентрат вольфрамовый, который содержит примерно 55−65% ангидрида вольфрама. Контролируется в них и наличие примесей: висмута, сурьмы, меди, олова, мышьяка, серы, фосфора.
  2. Получение вольфрамового ангидрида. Он является сырьём для изготовления вольфрама металлического или же его карбида. Для этого проводится ряд процедур, таких как: выщелачивание спёка и сплава, разложение концентратов, получение вольфрамовой технической кислоты и прочие. В результате этих действий должен получиться продукт, который будет содержать в себе 99,9% трехокиси вольфрама.
  3. Получение порошка. В виде порошка чистый металл может быть получен из ангидрида. Для этого проводится восстановление углеродом или водородом. Углеродное восстановление проводится реже, потому что ангидрид насыщается карбидами и это приводит к хрупкости металла и ухудшению обработки. При получении порошка применяют специальные методы, которые позволяют контролировать форму и размер зёрен, гранулометрический и химический составы.
  4. Получение вольфрама компактного. В основном он в виде слитков или штабиков является заготовкой для изготовления полуфабрикатов: ленты, прутков, проволоки и прочих.

Вольфрамовая продукция

Из вольфрама изготавливают многие необходимые для хозяйства предметы, такие как проволока, прутки и прочие.

Прутки

Одной из наиболее распространённой продукцией из этого тугоплавкого материала являются вольфрамовые прутки. Исходным материалом для его изготовления является штабик.

Чтобы из штабика получить пруток его подвергают ковке, используя ротационную ковочную машину.

Осуществляется ковка при нагревании, так как этот металл при комнатной температуре очень хрупкий. В ковке выделяют несколько этапов. На каждом последующем прутки получаются меньшего диаметра.

На первом этапе получаются прутки, которые будут иметь диаметр до 7 миллиметров, если штабик будет иметь длину от 10 до 15 сантиметров. Температура заготовки при ковке должна равняться 1450−1500 градусов. Нагревающим материалом обычно является молибден. После второго этапа прутки будут составлять в диаметре до 4,5 миллиметров. Температура штабика при её производстве примерно 1250−1300 градусов. На следующем этапе прутки будут иметь диаметр до 2,75 миллиметров.

Прутки марок ВЧ и ВА получают при более низких температурах, чем марок ВИ, ВЛ и ВТ.

Если заготовка была получена методом плавки, то горячая ковка не осуществляется. Связано это с тем, что такие слитки имеют крупнокристаллическую грубую структуру. При использовании горячей ковки могут появиться разрушения и трещины.

В этой ситуации вольфрамовые слитки подвергаются горячему двойному прессованию (приблизительная степень деформации 90%). Производится первое прессование при температурном режиме в 1800—1900 градусов, а второе — 1350−1500. После этого заготовки подвергаются горячей ковке для того, чтобы из них получить вольфрамовые прутки.

Эта продукция применяется во многих промышленных отраслях. Одна из наиболее распространённых — сварочные неплавящиеся электроды. Для них подойдут прутки, которые изготовлены из марок ВЛ, ВЛ и ВТ. В качестве нагревателей применяются прутки, изготовленные из марок МВ, ВР и В. А. Они применяются в печах, температура которых может достигать 3 тыс. градусов в вакууме, атмосфере инертного газа или водорода. Вольфрамовые прутки могут быть катодами газозарядных и электронных приборов, а также радиоламп.

Электроды

Одним из главных компонентов, которые необходимы для сварки, являются сварочные электроды. При сварке дуговой они используются наиболее широко. Относится она к термическому классу сварки, в котором за счёт термической энергии осуществляется плавление. Автоматическая, полуавтоматическая или ручная дуговая сварка является самой распространённой. Вольтовой дугой создаётся тепловая энергия, которая находится между изделием и электродом. Дугой называют стабильный мощный электрический заряд в ионизированной атмосфере паров металла, газов. Чтобы получить дугу, электрод к месту сварки проводит электрический ток.

Сварочным электродом называют проволочный стержень, на который нанесено покрытие (возможны варианты и без покрытия). Для сварки существует множество различных электродов. Их отличительными чертами являются диаметр, длина, химический состав. Для сварки определённых сплавов или металлов применяются разные электроды. Наиболее важным видом классификации является разделение электродов на неплавящиеся и плавящиеся.

Сварочные плавящиеся электроды во время сварки расплавляются, их металл вместе с металлом расплавленным свариваемой детали пополняют сварочную ванну. Выполняют такие электроды из меди и стали.

А вот электроды неплавящиеся в процессе сварки не расплавляются. К ним относят вольфрамовые и угольные электроды. При сварке необходимо подавать присадочный материал, который плавится и с расплавленным материалом свариваемого элемента образуют сварочную ванну. Для этих целей в основном применяют сварочные прутки или проволоку. Электроды сварочные могут быть непокрытыми и покрытыми. Покрытие играет важную роль. Его компоненты могут обеспечить получение металла швов определённых свойств и состава, защиту расплавленного металла от влияния воздуха и стабильное горение дуги.

Составляющие в покрытии могут быть раскисляющими, шлакообразующими, газообразующими, стабилизирующими или легирующими. Покрытие может быть целлюлозным, основным, рутиловым или кислым.

Вольфрамовые электроды используются для сварки металлов цветных, а также их сплавов, высоколегированных сталей. Хорошо вольфрамовый электрод подходит для образования сварного шва повышенной прочности, при этом детали могут иметь различный химический состав.

Вольфрамовая продукция очень качественная и нашла своё применение во многих отраслях, в некоторых она просто незаменима.

tokar.guru

Что такое вольфрам? Что это за материал?

Вольфрам — металл с уникальными свойствами. Он имеет самую высокую температуру кипения (5555 °C — такая же температура в фотосфере Солнца) и плавления (3422 °C) среди металлов, при этом — самый низкий коэффициент теплового расширения. Кроме того, он — один самых твёрдых, тяжёлых, стабильных и плотных металлов: плотность вольфрама сравнима с плотностью золота и урана и в 1, 7 раза выше, чем у свинца.

Его электропроводность почти в 3 раза ниже, чем у меди, однако достаточно высока. В очищенном виде вольфрам — серебристо-белый, напоминает по внешнему виду сталь или платину, при значительном нагреве — до 1600 °C — отлично куётся.

История открытия и применения

Своё название металл получил от вольфрамита — минерала, название которого с латинского переводится как «волчья пена», а с немецкого — как «волчьи сливки». Такое странное наименование связано с поведением минерала: он мешал выплавлять олово, когда сопровождал добытую оловянную руду, превращая ценный в средние века материал в пену шлаков. Про него тогда говорили: «ест олово, словно овцу волк».

Открытие чистого вольфрама произошло в двух местах одновременно. В 1781 году химик Шееле (Швеция) получает «тяжёлый камень», воздействуя азотной кислотой на шеелит. А в 1783 году химики Элюар (Испания) также сообщают о выделении чистого вольфрама. Главные запасы металла оказались в Казахстане, Канаде, Китае, США.

Применение вольфрама. Карбид вольфрама.

Примерно 50% вольфрама используется для производства твёрдых материалов, в особенности — карбида вольфрама с температурой плавления 2770 °С.

Карбид вольфрама — химическое соединение равных по числу атомов вольфрама и углерода. Он в 2 раза жёстче, чем сталь, имеет коэффициент жёсткости 9 по шкале Мооса (у алмаза коэффициент 10).

Карбид вольфрама применяют для изготовления:

— режущих инструментов, чрезвычайно устойчивых к истиранию и воздействию высоких температур;

— бронебойных боеприпасов;

— танковой брони; — деталей самолётов и двигателей;

— деталей космических кораблей и ракет;

— оборудования для атомной промышленности;

— балластов для килей яхт, коммерческих воздушных судов, гоночных автомобилей;

— хирургических инструментов, предназначенных для открытой (полостной) хирургии и лапароскопической (ножницы, пинцеты, захваты, резаки и другие), — они дороже, чем медицинская сталь, однако обладают лучшей производительностью;

— ювелирных изделий, особенно свадебных колец: популярность вольфрама в обручальных кольцах вызвана физическими свойствами металла (прочностью, тугоплавкостью, словно символизирующими подобную же прочность отношений) и его внешним видом — отполированный, вольфрам неопределённо долго сохраняет сияющий, зеркальный вид, так как в обычной жизни поцарапать его чем-то невозможно;

— шарика в дорогих шариковых ручках;

— калибровочных блоков, используемых, в свою очередь, для производства прецизионных длин в размерной метрологии.

Другие случаи применения вольфрама

Вольфрам применяют в производстве нагревательных элементов для высокотемпературных вакуумных печей, нитей накаливания в разнообразных приборах освещения. Сульфид вольфрама нашёл применение в качестве высокотемпературной смазки, выдерживающей нагрев до 500 °C. Монокристаллы вольфраматов используют в ядерной физике и медицине.

www.vseznaika.org

Вольфрам — свойства и область применения

Из всех известных сегодня металлов вольфрам самый тугоплавкий. Он занимает 74-ю позицию периодической системы, имеет ряд схожих свойств с молибденом и хромом, находящимися с ним в одной группе. На вид вольфрам представляет твердое вещество серого цвета, с характерным серебристым блеском.

Основные характеристики вольфрама

Для практического применения наиболее важны высокие показатели следующих характеристик:

Чистый вольфрам обладает высокой пластичностью, не растворяется в специальном кислотном растворе без предварительного нагрева хотя бы до 5000С. Он легко вступает в реакцию с углеродом, следствием которой является образование карбида вольфрама известного высокой прочностью. Также металл известен своими оксидами, наиболее распространенный из них вольфрамовый ангидрид. Его главное преимущество над остальными, возможность восстановления порошка к состоянию компактного металла, с побочным образованием низших оксидов.

Режущие пластины фирмы Sandvik Coromant с применением карбида вольфрама

Среди основных характеристик, делающих применение вольфрама затруднительным называют следующие:

Кроме того, высокая температура кипения, а также точка испарения затрудняют добычу компактного материала.

Сплавы, содержащие вольфрам

Сегодня различают однофазные сплавы вольфрама. Это подразумевает внедрение одного или нескольких элементов. Наиболее известны соединения вольфрама с молибденом. Легирование этим элементом повышает прочность вольфрама при его растяжении. Также к однофазным сплавам относятся системы: вольфрам-титан/цирконий, ниобий, гафний.

Однако большей пластичности придает вольфраму рений, сохраняя остальные показатели на характерном ему высоком уровне. Но практическое применение таких соединений ограничено трудностями при добыче Re.

Поскольку вольфрам наиболее тугоплавкий материал, получить его сплавы трудно традиционным способом. При температуре плавления вольфрама другие металлы уже кипят или даже переходят в газообразную фазу. Современные технологии позволяют получать ряд сплавов с помощью электролиза. Например, вольфрам — никель — кобальт, который используется не для изготовления целых деталей, а с целью нанесения защитного слоя на менее прочные металлы.

Также в промышленности все еще остается актуальным способ получения вольфрамовых сплавов, используя методы порошковой металлургии. При этом требуется создание особых условий технологического процесса, который включает в себя наличие вакуума. Особенности взаимодействия металлов с вольфрамом делают предпочтительными соединения не парного характера, а с использованием 3, 4-х и более компонентов. Такие сплавы отличаются особенной твердостью, однако малейшее отклонение от процентного содержания того или иного элемента приводит к повышению хрупкости готового сплава.

Получение вольфрама: порошок и компактный металл

Вольфрам, как многие другие элементы редкой группы, не встречается в природе. Поэтому добыча металла не сопровождается строительством крупных промышленных комплексов. Сам процесс получения материала условно делят на такие этапы:

  1. Добыча руды, содержащей редкий металл.
  2. Создание условий для возможного выделения вольфрама от перерабатываемой массы.
  3. Концентрирование материала в виде раствора или осадка.
  4. Очищение полученного химического соединения.
  5. Получение чистого вещества.

Вольфрамовая руда

Более сложным оказывается процесс изготовления компактного металла, к примеру, вольфрамовой проволоки. Основная трудность заключается в том, что нельзя допустить даже малейшего попадания примесей, резко ухудшающих плавкие и прочностные свойства.

Область применения вольфрама

С помощью этого металла изготавливают нити накаливания, рентгеновские трубки, нагреватели, экраны вакуумных печей, предназначающихся для использования в высокотемпературном режиме.

Рентгеновская трубка с нитью из вольфрама

Сталь, легированная вольфрамом имеет высокие прочностные качества. Продукция из таких видов сплава используется для изготовления инструментов широкого предназначения: медицина, бурение скважин, изделия для обработки материалов в машиностроении (режущие пластины, как на фото выше). Преимуществом соединения считается устойчивость к истиранию, маловероятность появления трещин в процессе эксплуатации. Наиболее известная в строительстве марка стали с использованием вольфрама называется «победит».

Лом вольфрама

Химическая промышленность также нашла применение вольфраму. Из него делают краски, катализаторы, пигменты.

Атомная промышленность использует тигли из этого металла, а также специальные контейнера для хранения радиоактивных отходов.

О нанесении покрытий из вольфрама уже вкратце упоминалось. Оно применяется для нанесения на материалы, работающие при высоких температурах в восстановительных и нейтральных средах, как защитная пленка.

Также известны прутки, используемые при дуговой сварке. Поскольку вольфрам неизменно остается тугоплавким металлом при выполнении сварочных работ он используется с присадочными проволоками.

xlom.ru

ВОЛЬФРАМ

Содержание статьи

ВОЛЬФРАМ – (Wolframium), W – химический элемент 6 (VIb) группы периодической системы Д.И.Менделеева, атомный номер 74, атомная масса 183,85. Известно 33 изотопа вольфрама: от 158W до 190W. В природе обнаружено пять изотопов, три из которых являются стабильными: 180W (доля среди природных изотопов 0,120%), 182W (26,498%), 186W (28,426%), а другие два слабо радиоактивны: 183W (14,314%, Т½ = 1,1·1017 лет), 184W (30,642%, Т½ = 3·1017 лет). Конфигурация электронной оболочки – [Xe]4f145d46s2. Наиболее характерна степень окисления +6. Известны соединения со степенями окисления вольфрама +5, +4, +3, +2 и 0.

Еще в 14–16 вв. горняки и металлурги в Рудных горах Саксонии отмечали, что некоторые руды нарушали процесс восстановления оловянного камня (минерала касситерита, SnO2) и приводили к зашлаковыванию расплавленного металла. На профессиональном языке того времени этот процесс характеризовали так: «Эти руды вырывают олово и пожирают его, как волк пожирает овцу». Рудокопы дали этой «надоедливой» породе названия «Wolfert» и «Wolfrahm», что в переводе означает «волчья пена» или «пена в пасти у разъяренного волка». Немецкий химик и металлург Георг Агрикола в своем фундаментальном труде Двенадцать книг о металлах (1556) приводит латинское название этого минерала – Spuma Lupi, или Lupus spuma, которое по существу представляет собой кальку с народного немецкого названия.

В 1779 Питер Вульф (Peter Wulf) исследовал минерал, сейчас называемый вольфрамитом (FeWO4·xMnWO4), и пришел к выводу, что тот должен содержать неизвестное ранее вещество. В 1783 в Испании братья д'Эльгуйяр (Juan Jose и Fausto D'Elhuyar de Suvisa) при помощи азотной кислоты выделили из этого минерала «кислую землю» – желтый осадок оксида неизвестного металла, растворимый в аммиачной воде. В минерале также были обнаружены оксиды железа и марганца. Хуан и Фаусто прокалили «землю» с древесным углем и получили металл, который они предложили называть «вольфрамом», а сам минерал – «вольфрамитом». Таким образом, испанские химики д'Эльгуйяр первыми опубликовали сведения об обнаружении нового элемента.

Позже стало известно, что впервые оксид вольфрама был обнаружен не в «пожирателе олова» – вольфрамите, а в другом минерале.

В 1758 шведский химик и минералог Аксель Фредрик Кронштедт (Axel Fredrik Cronstedt) открыл и описал необычайно тяжелый минерал (CaWO4, названный в последствии шеелитом), который назвал Tung Sten, что по-шведски означает «тяжелый камень». Кронштедт был убежден, что этот минерал содержит новый, еще не открытый, элемент.

В 1781 великий шведский химик Карл Шееле разложил «тяжелый камень» азотной кислотой, обнаружив при этом, помимо соли кальция, «желтую землю», не похожую на белую «молибденовую землю», впервые выделенную им же три года назад. Интересно, что один из братьев д'Эльгуйяр работал в то время в его лаборатории. Шееле назвал металл «tungsten», по названию минерала, из которого был впервые выделен желтый оксид. Так у одного и того же элемента появилось два названия.

В 1821 фон Леонард предложил называть минерал CaWO4 шеелитом.

Название вольфрам можно найти у Ломоносова; Соловьев и Гесс (1824) называют его волчец, Двигубский (1824) – вольфрамий.

Еще в начале 20 в. во Франции, Италии и Англо-Саксонских странах элемент «вольфрам» обозначали как Tu (от tungsten). Лишь в середине прошлого столетия утвердился современный символ W.

Вольфрам в природе. Типы месторождений.

Вольфрам – довольно редкий элемент, его кларк (процентное содержание в земной коре) составляет 1,3·10–4% (57-е место среди химических элементов).

Вольфрам встречается, главным образом, в виде вольфраматов железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов.

Наиболее распространенный минерал вольфрамит представляет собой твердый раствор вольфраматов железа и марганца (Fe, Mn)WO4. Это тяжелые твердые кристаллы цвета от коричневого до черного, в зависимости от того, какой элемент преобладает в их составе. Если больше марганца (Mn:Fe > 4:1), то кристаллы черные, если же преобладает железо (Fe:Mn > 4:1) – коричневые. Первый минерал называют гюбнеритом, второй – ферберит. Вольфрамит парамагнитен и хорошо проводит электрический ток.

Из других минералов вольфрама промышленное значение имеет шеелит – вольфрамат кальция CaWO4. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит не магнитится, но обладает другой характерной особенностью – способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.

Как правило месторождения вольфрамовых руд связаны с областями распространения гранитов. Крупные кристаллы вольфрамита или шеелита – большая редкость. Обычно минералы лишь вкраплены в древние гранитные породы. Средняя концентрация вольфрама в них всего 1–2%, поэтому извлекать его довольно трудно. Всего известно около 15 собственных минералов вольфрама. Среди них расоит и штольцит, представляющие собой две различные кристаллические модификации вольфрамата свинца PbWO4. Другие минералы являются продуктами разложения или вторичными формами обычных минералов – вольфрамита и шеелита, например, вольфрамовая охра и гидротунгстит, являющийся гидратированным оксидом вольфрама, образовавшимся из вольфрамита; русселит – минерал, содержащий оксиды висмута и вольфрама. Единственный неоксидный минерал вольфрама – тунгстенит WS2, основные запасы которого сосредоточены в США. Обычно содержание вольфрама в разрабатываемых месторождениях лежит в пределах от 0,3 до 1,0% WO3.

Все вольфрамовые месторождения имеют магматическое или гидротермальное происхождение. В процессе охлаждения магмы происходит дифференциальная кристаллизация, поэтому шеелит и вольфрамит часто обнаруживаются в виде жил, там, где магма проникала в трещины земной коры. Большая часть вольфрамовых месторождений сосредоточена в молодых горных цепях – Альпах, Гималаях и Тихоокеанском поясе. По данным Американской геологической службы за 2003 (U.S. Geological Surveys) в Китае находится порядка 62% мировых запасов вольфрама. Значительные залежи этого элемента разведаны также в США (Калифорния, Колорадо), Канаде, России, Южной Корее, Боливии, Бразилии, Австралии и Португалии.

Мировые запасы вольфрамовых руд оцениваются в 2,9·106 тонн в пересчете на металл. Наибольшими запасами обладает Китай (1,8·106 тонн), второе место делят Канада и Россия (2,6·105 и 2,5·105 тонн соответственно). На третьем месте находятся США (1,4·105 тонн), однако сейчас почти все американские месторождения законсервированы. Среди остальных стран весомыми запасами обладают Португалия (запасы 25 000 т), Северная Корея (35 000 т), Боливия (53 000 т) и Австрия (10 000 т).

Ежегодная мировая добыча вольфрамовых руд составляет 5,95·104 тонн в пересчете на металл, из которых 49,5·104 тонн (83%) извлекается в Китае. В России добывается 3400 тонн, в Канаде – 3000 тонн.

На Кинг-Айленде в Австралии добывается 2000–2400 тонн вольфрамовой руды в год. В Австрии шеелит добывается в Альпах (провинции Зальцбург и Штайермарк). В северо-восточной Бразилии разрабатывается совместное месторождение вольфрама, золота и висмута (шахты Канунг и месторождение Кальзас в Юконе) с предполагаемым запасом золота 1 млн. унций и 30 000 т оксида вольфрама. Мировым лидером в разработке вольфрамового сырья является Китай (месторождения Жианьши (60% китайской добычи вольфрама), Хуньань (20%), Юннань (8%), Гуаньдонь (6%), Гуаньжи и Внутренняя Монголия (2% каждое) и другие). Объемы ежегодной добычи в Португалии (месторождение Панасхира) оцениваются в 720 т вольфрама в год. В России основные месторождения вольфрамовых руд расположены в двух регионах: на Дальнем Востоке (Лермонтовское месторождение, 1700 т концентрата в год) и на Северном Кавказе (Кабардино-Балкария, Тырныауз). Завод в Нальчике перерабатывает руду в оксид вольфрама и паравольфрамат аммония.

Крупнейшим потребителем вольфрама является Западная Европа – ее доля на мировом рынке составляет 30%. По 25% от общего потребления приходится на Северную Америку и Китай, а 12–13% на долю Японии. Спрос на вольфрам в странах СНГ оценивается в 3000 тонн металла в год.

Более половины (58%) всего потребляемого металла используется в производстве карбида вольфрама, почти четверть (23%) – в виде различных сплавов и сталей. На изготовление вольфрамового «проката» (нитей для ламп накаливания, электрических контактов и т.д.) приходится 8% произведенного вольфрама, а оставшиеся 9% используются при получении пигментов и катализаторов.

Переработка вольфрамового сырья.

Первичная руда содержит около 0,5% оксида вольфрама. После флотации и отделения немагнитных компонентов остается порода, содержащая порядка 70% WO3. Затем обогащенная руда (и окисленный лом вольфрама) выщелачивается с помощью карбоната или гидроксида натрия:

4FeWO4 + O2 + 4Na2CO3 = 4NaWO4 + 2Fe2O3 + 4CO2

6MnWO4 + O2 + 6Na2CO3 = 6Na2WO4 + 2Mn3O4 + 6CO2

WO3 + Na2CO3 = Na2WO4 + CO2

WO3 + 2NaOH = Na2WO4 + h3O

Na2WO4 + CaCl2 = 2NaCl + CaWO4Ї.

Полученный раствор освобождается от механических примесей, а затем подвергается переработке. Первоначально осаждается вольфрамат кальция с последующим его разложением соляной кислотой и растворением образовавшегося WO3 в водном аммиаке. Иногда очистку первичного вольфрамата натрия осуществляют с помощью ионообменных смол. Конечный продукт процесса – паравольфрамат аммония:

CaWO4 + 2HCl = h3WO4Ї + CaCl2

h3WO4 = WO3 + h3O

WO3 + 2Nh4·h3O(конц.) = (Nh5)2WO4 + h3O

12(Nh5)2WO4 + 14HCl(оч.разб.) = (Nh5)10h3W12O42 + 14Nh5Cl + 6h3O

Другим способом выделения вольфрама из обогащенной руды является обработка хлором или хлороводородом. Этот метод основан на относительно низкой температуре кипения хлоридов и оксохлоридов вольфрама (300° С). Способ применяется для получения особо чистого вольфрама.

Вольфрамитовый концентрат может быть сплавлен непосредственно с углем или коксом в камере с электрической дугой. При этом получают ферровольфрам, который используется при изготовлении сплавов в сталелитейной промышленности. Чистый концентрат шеелита также может быть добавлен в расплав стали.

Около 30% мирового потребления вольфрама обеспечивается за счет переработки вторичного сырья. Загрязненный лом карбида вольфрама, стружки, опилки и остатки порошкового вольфрама окисляются и переводятся в паравольфрамат аммония. Лом быстрорежущих сталей утилизируют в производстве этих же сталей (до 60–70% всего расплава). Лом вольфрама из ламп накаливания, электродов и химических реактивов практически не перерабатывается.

Основным промежуточным продуктом в производстве вольфрама является паравольфрамат аммония (Nh5)10W12O41·5h3O. Он является и основным транспортируемым соединением вольфрама. Прокаливая паравольфрамат аммония, получают оксид вольфрама(VI), который затем обрабатывают водородом при 700–1000° С и получают порошок металлического вольфрама. Спеканием его с углеродным порошком при 900–2200° С (процесс цементации) получают карбид вольфрама.

В 2002 цена паравольфрамата аммония – основного коммерческого соединения вольфрама – составляла около 9000 долл. за тонну в пересчете на металл. В последнее время появилась тенденция к снижению цен на вольфрамовую продукцию вследствие большого предложения со стороны Китая и стран бывшего СССР.

В России вольфрамовые продукты производят: Скопинский гидрометаллургический завод «Металлург» (Рязанская область, вольфрамовый концентрат и ангидрид), Владикавказский Завод «Победит» (Северная Осетия, вольфрамовый порошок и слитки), Нальчикский Гидрометаллургический завод (Кабардино-Балкария, металлический вольфрам, карбид вольфрама), Кировградский завод твердых сплавов (Свердловская область, карбид вольфрама, вольфрамовый порошок), Электросталь (Московская область, паравольфрамат аммония, карбид вольфрама), Челябинский Электрометаллургический завод (ферровольфрам).

Свойства простого вещества.

Металлический вольфрам имеет светло-серый цвет. После углерода у него самая высокая температура плавления среди всех простых веществ. Ее значение определено в пределах 3387–3422° С. У вольфрама – превосходные механические качества при высоких температурах и наименьший коэффициент расширения среди всех металлов. Температура кипения 5400–5700° С. Вольфрам – один из наиболее тяжелых металлов с плотностью 19250 кг/м3. Электропроводность вольфрама при 0° C – величина порядка 28% от электропроводности серебра, являющегося наиболее электропроводящим металлом. Чистый вольфрам довольно легко поддается обработке, однако обычно он содержит примеси углерода и кислорода, что и придает металлу известную всем твердость.

Вольфрам обладает очень высоким модулем растяжения и сжатия, очень высоким сопротивлением температурной ползучести, высокой тепло- и электропроводностью, высоким коэффициентом электронной эмиссии, который может быть еще улучшен сплавлением вольфрама с некоторыми оксидами металлов.

Вольфрам химически стоек. Соляная, серная, азотная, фтороводородная кислоты, царская водка, водный раствор гидроксида натрия, аммиак (до 700° С), ртуть и пары ртути, воздух и кислород (до 400° С), вода, водород, азот, угарный газ (до 800° С), хлороводород (до 600° С) на вольфрам не действуют. С вольфрамом реагируют аммиак в смеси с пероксидом водорода, жидкая и кипящая сера, хлор (свыше 250° С), сероводород в условиях температуры красного каления, горячая царская водка, смесь фтористоводородной и азотной кислот, расплавы нитрата, нитрита, хлората калия, диоксида свинца, нитрита натрия, горячая азотная кислота, фтор, бром, йод. Карбид вольфрама образуется при взаимодействии углерода с вольфрамом при температуре выше 1400° С, оксид – при взаимодействии с водяным паром и диоксидом серы (при температуре красного каления), углекислым газом (выше 1200° С), оксидами алюминия, магния и тория.

Свойства важнейших соединений вольфрама.

Среди важнейших соединений вольфрама – его оксид, хлорид, карбид и паравольфрамат аммония.

Оксид вольфрама(VI) WO3 – кристаллическое вещество светло-желтого цвета, при нагревании становящееся оранжевым, температура плавления 1473° С, кипения – 1800° С. Соответствующая ему вольфрамовая кислота неустойчива, в водном растворе в осадок выпадает дигидрат, теряющий одну молекулу воду при 70–100° С, а вторую – при 180–350° С. При реакции WO3 со щелочами образуются вольфраматы.

Анионы вольфрамовых кислот склонны к образованию полисоединений. При реакции с концентрированными кислотами образуются смешанные ангидриды:

12WO3 + h4PO4(кип., конц.) = h4[PW12O40]

При взаимодействии оксида вольфрама с металлическим натрием образуется нестехиометрический вольфрамат натрия, носящий название «вольфрамовая бронза»:

WO3 + xNa = NaxWO3

При восстановлении оксида вольфрама водородом в момент выделения образуются гидратированные оксиды со смешанной степенью окисления – «вольфрамовые сини» WO3–n(OH)n, n = 0,5–0,1.

WO3 + Zn + HCl ® [W10O25(OH) + W3O8(OH)] («синь»), W2O5(OH) (коричн.)

Оксид вольфрама(VI) полупродукт в производстве вольфрама и его соединений. Является компонентом некоторых промышленно важных катализаторов гидрирования и пигментов для керамики.

Высший хлорид вольфрама WCl6 образуется при взаимодействии оксида вольфрама (или металлического вольфрама) с хлором (так же как и с фтором) или тетрахлоридом углерода. Он отличается от других соединений вольфрама низкой температурой кипения (347° С). По своей химической природе хлорид является хлорангидридом вольфрамовой кислоты, поэтому при взаимодействии с водой образуются неполные хлорангидриды, при взаимодействии со щелочами – соли. В результате восстановления хлорида вольфрама алюминием в присутствии монооксида углерода образуется карбонил вольфрама:

WCl6 + 2Al + 6CO = [W(CO)6]Ї + 2AlCl3 (в эфире)

Карбид вольфрама WC получается при взаимодействии порошкового вольфрама с углем в восстановительной атмосфере. Твердость, сравнимая с алмазом, определяет сферу его применения.

Вольфрамат аммония (Nh5)2WO4 устойчив только в аммиачном растворе. В разбавленной соляной кислоте в осадок выпадает паравольфрамат аммония (Nh5)10h3W12O42, являющийся основным полупродуктом вольфрама на мировом рынке. Паравольфрамат аммония легко разлагается при нагревании:

(Nh5)10h3W12O42 = 10Nh4 + 12WO3 + 6h3O (400 – 500° C)

Применение вольфрама.

Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5–18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68–86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» – очень твердый сплав, содержащий 80–87% вольфрама, 6–15% кобальта, 5–7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Долгие годы с момента открытия вольфрам оставался лабораторной редкостью, лишь в 1847 Оксланд получил патент на производство вольфрамата натрия, вольфрамовой кислоты и вольфрама из касситерита (оловянного камня). Второй патент, полученный Оксландом в 1857, описывал производство железо-вольфрамовых сплавов, которые составляют основу современных быстрорежущих сталей.

В середине 19 в. предпринимались первые попытки использовать вольфрам в производстве стали, однако долгое время не удавалось внедрить эти разработки в промышленность из-за высокой цены на металл. Возросшая потребность в легированных и высокопрочных сталях привела к запуску производства быстрорежущих сталей на фирме «Вифлеемская Сталь» (Bethlehem Steel). Образцы этих сплавов были впервые представлены в 1900 на Всемирной выставке в Париже.

Технология изготовления вольфрамовых нитей и ее история.

Объемы производства вольфрамовой проволоки имеют небольшую долю среди всех отраслей применения вольфрама, но развитие технологии ее получения сыграло ключевую роль в развитии порошковой металлургии тугоплавких соединений.

С 1878, когда Свон продемонстрировал в Ньюкастле изобретенные им восьми- и шестнадцатисвечевые угольные лампы, шел поиск более подходящего материала для изготовления нитей накаливания. Первая угольная лампа обладала эффективностью всего 1 люмен/ватт, которая была увеличена в следующие 20 лет модификацией методов обработки угля в два с половиной раза. К 1898 светоотдача таких лампочек составляла 3 люмен/ватт. Угольные нити в те времена нагревались пропусканием электрического тока в атмосфере паров тяжелых углеводородов. При пиролизе последних образующийся углерод заполнял поры и неровности нити, придавая ей яркий металлический блеск.

В конце 19 в. фон Вельсбах впервые изготовил металлическую нить для ламп накаливания. Он сделал ее из осмия (Тпл = 2700° С). Осмиевые нити обладали эффективностью 6 люмен/ватт, однако, осмий – редкий и чрезвычайно дорогой элемент платиновой группы, поэтому широкого применения в изготовлении бытовых устройств не нашел. Тантал с температурой плавления 2996° С широко использовался в виде вытянутой проволоки с 1903 по 1911 благодаря работам фон Болтона из фирмы Сименс и Хальске. Эффективность танталовых ламп составляла 7 люмен/ватт.

Вольфрам начал применяться в лампах накаливания в 1904 и вытеснил в этом качестве все остальные металлы к 1911. Обычная лампа накаливания с вольфрамовой нитью обладает свечением 12 люмен/ватт, а лампы, работающие под высоким напряжением – 22 люмен/ватт. Современные флуоресцентные лампы с вольфрамовым катодом имеют эффективность порядка 50 люмен/ватт.

В 1904 на фирме «Сименс-Хальске» попытались применить разработанный для тантала процесс волочения проволоки для более тугоплавких металлов, таких как вольфрам и торий. Жесткость и недостаток ковкости вольфрама не позволили гладко провести процесс. Тем не менее, позже, в 1913–1914, было показано, что расплавленный вольфрам может быть раскатан и вытянут с использованием процедуры частичного восстановления. Электрическую дугу пропускали между вольфрамовым стержнем и частично расплавленной вольфрамовой капелькой, помещенной в графитовый тигель, покрытый изнутри вольфрамовым порошком и находящийся в атмосфере водорода. Тем самым были получены небольшие капли расплавленного вольфрама, около 10 мм в диаметре и 20–30 мм в длину. Хотя и с трудом, но с ними уже можно было работать.

В те же годы Юст и Ханнаман запатентовали процесс изготовления вольфрамовых нитей. Тонкий металлический порошок смешивался с органическим связующим, полученная паста пропускалась через фильеры и нагревалась в специальной атмосфере для удаления связующего, при этом получалась тонкая нить чистого вольфрама.

В 1906–1907 был разработан хорошо известный процесс экструзии, применявшийся до начала 1910-х. Черный вольфрамовый порошок очень тонкого помола смешивался с декстрином или крахмалом до образования пластичной массы. Гидравлическим давлением эта масса продавливалась через тонкие алмазные сита. Получающаяся таким образом нить оказывалась достаточно прочной для того, чтобы быть намотанной на катушки и высушенной. Далее нити разрезались на «шпильки», которые нагревались в атмосфере инертного газа до температуры красного каления для удаления остатков влаги и легких углеводородов. Каждая «шпилька» закреплялась в зажиме и нагревалась в атмосфере водорода до яркого свечения пропусканием электрического тока. Это приводило к окончательному удалению нежелательных примесей. При высоких температурах отдельные маленькие частицы вольфрама сплавляются и образуют однородную твердую металлическую нить. Эти нити эластичны, хотя и хрупки.

В начале 20 в. Юст и Ханнаман разработали другой процесс, отличающийся своей оригинальностью. Угольная нить диаметром 0,02 мм покрывалась вольфрамом путем накаливания в атмосфере водорода и паров гексахлорида вольфрама. Покрытая таким образом нить нагревалась до яркого свечения в водороде при пониженном давлении. При этом вольфрамовая оболочка и углеродное ядро полностью сплавлялись друг с другом, образуя карбид вольфрама. Получающаяся нить имела белый цвет и была хрупкой. Далее нить нагревалась в токе водорода, который взаимодействовал с углеродом, оставляя компактную нить из чистого вольфрама. Нити обладали теми же характеристиками, что и полученные в процессе экструзии.

В 1909 американцу Кулиджу удалось получить ковкий вольфрам без применения наполнителей, а лишь с помощью разумной температурной и механической обработки. Основная проблема в получении вольфрамовой проволоки заключалась в быстром окислении вольфрама при высоких температурах и наличии зернистой структуры в получающемся вольфраме, которая приводила к его хрупкости.

Современное производство вольфрамовой проволоки является сложным и точным технологическим процессом. Исходным сырьем служит порошковый вольфрам, получаемый восстановлением паравольфрамата аммония.

Вольфрамовый порошок, применяемый для производства проволоки, должен иметь высокую чистоту. Обычно смешивают порошки вольфрама различного происхождения, чтобы усреднить качество металла. Смешиваются они в мельницах и во избежание окисления нагретого трением металла в камеру пропускают поток азота. Затем порошок прессуется в стальных пресс-формах на гидравлических или пневматических прессах (5–25 кг/мм2). В случае использования загрязненных порошков, прессовка получается хрупкой, и для устранения этого эффекта добавляется полностью окисляемое органическое связующее. На следующей стадии производится предварительное спекание штабиков. При нагревании и охлаждении прессовок в потоке водорода их механические свойства улучшаются. Прессовки еще остаются достаточно хрупкими, и их плотность составляет 60–70% от плотности вольфрама, поэтому штабики подвергают высокотемпературному спеканию. Штабик зажимается между контактами, охлаждаемыми водой, и в атмосфере сухого водорода через него пропускается ток для нагрева его почти до температуры плавления. За счет нагревания вольфрам спекается и его плотность возрастает до 85–95% от кристаллического, в то же время увеличиваются размеры зерен, растут кристаллы вольфрама. Затем следует ковка при высокой (1200–1500° С) температуре. В специальном аппарате штабики пропускаются через камеру, которая сдавливается молотом. За одно пропускание диаметр штабика уменьшается на 12%. При ковке кристаллы вольфрама удлиняются, создается фибриллярная структура. После ковки следует протяжка проволоки. Стержни смазываются и пропускаются через сита из алмаза или карбида вольфрама. Степень вытяжки зависит от назначения получаемых изделий. Диаметр получаемой проволоки составляет около 13 мкм.

Биологическая роль вольфрама

ограничена. Его сосед по группе молибден является незаменимым в ферментах, обеспечивающих связывание атмосферного азота. Ранее вольфрам использовался в биохимических исследованиях только как антагонист молибдена, т.е. замена молибдена на вольфрам в активном центре фермента приводила к его дезактивации. Ферменты, напротив, дезактивирующиеся при замене вольфрама на молибден, обнаружены в термофильных микроорганизмах. Среди них формиатдегидрогеназы, альдегид-ферредоксин-оксидоредуктазы; формальдегид-ферредо-ксин-оксидоредуктаза; ацетиленгидратаза; редуктаза карбоновой кислоты. Структуры некоторых из этих ферментов, например, альдегид-ферредоксин-оксидоредуктазы сейчас определены.

Тяжелые последствия воздействия вольфрама и его соединений на человека не выявлены. При длительном воздействии больших доз вольфрамовой пыли может возникнуть пневмокониоз, заболевание, вызываемое всеми тяжелыми порошками, попадающими в легкие. Наиболее частые симптомы этого синдрома – кашель, нарушения дыхания, атопическая астма, изменения в легких, проявление которых уменьшается после прекращения контакта с металлом.

Материалы в Интернете: http://minerals.usgs.gov/minerals/pubs/commodity/tungsten/

Юрий Крутяков

www.krugosvet.ru


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.