Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Ультразвук в медицине что это такое


10. Ультразвук и его использование в медицине

Ультразвук — упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц[

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных областях физики, технологии, химии и медицины.

Применение ультразвука [Диагностическое применение ультразвука в медицине (узи)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно вбрюшной полости и полости таза.

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

Фонофорез— сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно — ионов минералов бишофита. [1] Удобство ультрафонофореза медикаментов и природных веществ:

Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела — 0,2-0,4 Вт/см2., в области грудного и поясничного отдела — 0,4-0,6 Вт/см2).

11. Инфразвук и его влияние на организм

Инфразву́к (от лат.infra — ниже, под) — упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0.001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем[1] (см. Бермудский треугольник, Корабль-призрак).

studfiles.net

18. Ультразвук и его применение в медицине

18. Ультразвук и его применение в медицине

Ультразвук представляет собой высокочастотные механические колебания частиц твердой, жидкой или газообразной среды, неслышимые человеческим ухом. Частота колебаний ультразвука выше 20 000 в секунду, т. е. выше порога слышимости.

Для лечебных целей применяется ультразвук с частотой от 800 000 до 3 000 000 колебаний в секунду. Для генерирования ультразвука используются устройства, называемые ультразвуковыми излучателями.

Наибольшее распространение получили электромеханические излучатели. Применение ультразвука в медицине связано с особенностями его распространения и характерными свойствами. По физической природе ультразвук, как и звук, является механической (упругой) волной. Однако длина волны ультразвука существенно меньше длины звуковой волны. Чем больше различные акустические сопротивления, тем сильнее отражение и преломление ультразвука на границе разнородных сред. Отражение ультразвуковых волн зависит от угла падения на зону воздействия – чем больше угол падения, тем больше коэффициент отражения.

В организме ультразвук частотой 800—1000 кГц распространяется на глубину 8—10 см, а при частоте 2500–3000 Гц – на 1,0–3,0 см. Ультразвук поглощается тканями неравномерно: чем выше акустическая плотность, тем меньше поглощение.

На организм человека при проведении ультразвуковой терапии действуют три фактора:

1) механический – вибрационный микромассаж клеток и тканей;

2) тепловой – повышение температуры тканей и проницаемости клеточных оболочек;

3) физико-химический – стимуляция тканевого обмена и процессов регенерации.

Биологическое действие ультразвука зависит от его дозы, которая может быть для тканей стимулирующей, угнетающей или даже разрушающей. Наиболее адекватными для лечебно-профилактических воздействий являются небольшие дозировки ультразвука (до 1,2 Вт/см2), особенно в импульсном режиме. Они способны оказывать болеутоляющее, антисептическое (противомикробное), сосудорасширяющее, рассасывающее, противовоспалительное, десенсибилизирующее (противоаллергическое) действие.

В физиотерапевтической практике используются преимущественно отечественные аппараты трех серий: УЗТ-1, УЗТ-2, УЗТ-3.

Ультразвук не применяется на область мозга, шейных позвонков, костные выступы, области растущих костей, ткани с выраженным нарушением кровообращения, на живот при беременности, мошонку. С осторожностью ультразвук применяют на область сердца, эндокринные органы.

Различают непрерывный и импульсный ультразвук. Непрерывным ультразвуком принято называть непрерывный поток ультразвуковых волн. Этот вид излучения используется главным образом для воздействия на мягкие ткани и суставы. Импульсный ультразвук представляет собой прерывистое излучение, т. е. ультразвук посылается отдельными импульсами через определенные промежутки времени.

Следующая глава

fis.wikireading.ru

6.6. Ультразвук и его применения в медицине

Ультразвуком (УЗ) называют механические колебания и волны с частотами более 20 кГц.

Верхним пределом ультразвуковых частот условно можно счи­тать 109 —1010 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния веще­ства, в котором распространяется ультразвуковая волна.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили элек­тромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта (см. § 12.7). Обратный пьезоэффект заключается в механической деформации тел под действием элект­рического поля. Основной частью такого излучателя (рис. 6.13, а) является пластина или стержень1из вещества с хорошо выражен­ными пьезоэлектрическими свойствами (кварц, сегнетова соль, ке­рамический материал на основе титаната бария и др.). На поверх­ность пластины в виде проводящих слоев нанесены электроды2. Если к электродам приложить переменное электрическое напряже­ние от генератора 3, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствую­щей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса (см. § 5.5). Так, для пластин толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли — 1,5 МГц и титаната бария — 2,75 МГц.

Приемник УЗ можно создать на осно­ве пьезоэлектрического эффекта (пря­мой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла (рис. 6.13, б), которая приводит при пьезоэффекте к генерации переменно­го электрического поля; соответствую­щее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмот­рим этот вопрос.

По физической природе УЗ, как и звук, является механической (упругой) волной. Однако длина волны УЗ существенно меньше длины звуко­вой волны. Так, например, в воде длины волн равны 1,4 м (1 кГц, звук), 1,4 мм (1 МГц, УЗ) и 1,4 мкм (1 ГГц, УЗ). Дифракция волн (см. § 19.5) существенно зависит от соотношения длины волны и размеров тел, на которых волна дифрагирует. Непрозрачное (для звука) тело размером 1 м не будет препятствием для звуковой волны с длиной 1,4 м, но станет преградой для УЗ-волны с длиной 1,4 мм: возникнет «УЗ-тень». Это позволяет в некоторых случаях не учиты­вать дифракцию УЗ-волн, рассматривая при преломлении и отраже­нии эти волны как лучи (аналогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений (см. § 6.4). Так, УЗ хорошо отражается на границах мышца — надкостница — кость, на поверхности по­лых органов и т. д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т. п. (УЗ-локация). При УЗ-локации используют как непрерыв­ное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и от­раженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультра­звука до исследуемого объекта и обратно. Зная скорость распрост­ранения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет от­ражаться из-за наличия тонкого слоя воздуха между излучателем и биологическим объектом (см. § 6.4). Чтобы исключить воздуш­ный слой, поверхность УЗ-излучателя покрывают слоем масла.

Скорость распространения ультразвуковых волн и их поглоще­ние существенно зависят от состояния среды; на этом основано ис­пользование ультразвука для изучения молекулярных свойств ве­щества. Исследования такого рода являются предметом молеку­лярной акустики.

Как видно из (5.56), интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значи­тельной интенсивности даже при сравнительно небольшой ампли­туде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим [см. (5.14)], что говорит о наличии су­щественных сил, действующих на частицы в биологических тка­нях при облучении УЗ.

Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости — кавитаций.

Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходит разогревание вещества, а также ионизация и диссо­циация молекул.

Физические процессы, обусловленные воздействием УЗ, вызы­вают в биологических объектах следующие основные эффекты:

- микровибрации на клеточном и субклеточном уровне;

- разрушение биомакромолекул;

- перестройку и повреждение биологических мембран, изменение проницаемости мембран (см. гл. 11);

- тепловое действие;

- разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в ос­новном разделить на два направления: методы, диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы с ис­пользованием главным образом импульсного излучения. Этоэх-энцефалография — определение опухолей и отека головного моз­га (на рис. 6.14 показан эхоэнцефалограф «Эхо-12»); ультразву­ковая кардиография — измерение размеров сердца в динамике; в офтальмологии — ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта До­плера изучают характер движения сердечных клапанов и измеря­ют скорость кровотока. С диагностической целью по скоростиультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физио­терапия. На рис. 6.15 показан используемый для этих целей ап­парат УТП-ЗМ. Воздействие ультразвуком на пациента произво­дят с помощью специальной излучательной головки аппарата

Обычно для терапевтических целей применяют ультразвук часто­той 800 кГц, средняя его интенсивность около 1 Вт/см2и меньше.

Первичными механизмами ультразвуковой терапии являются механическое и тепловое действия на ткань.

При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани.

Способность ультразвука дробить тела, помещенные в жид­кость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарствен­ных веществ, полученные с помощью ультразвука.

В настоящее время разработан новый метод «сваривания» по­врежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Губительное воздействие ультразвука на микроорганизмы ис­пользуется для стерилизации.

Интересно применение ультразвука для слепых. Благодаря ультразвуковой локации с помощью портативного прибора «Ори­ентир» можно обнаруживать предметы и определять их характер на расстоянии до 10 м.

Перечисленные примеры не исчерпывают всех медико-биоло­гических применений ультразвука, перспектива расширения этих приложений поистине огромна. Так, можно ожидать, напри­мер, появления принципиально новых методов диагностики с внедрением в медицину ультразвуковой голографии (см. § 19.8).

studfiles.net

Ультразвук в медицине

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Понятие «ультразвук» приобрело в настоящее время более широкий смысл, чем просто обозначение высокочастотной части спектра акустических волн. С ним связаны целые области современной физики, промышленной технологии, информационной и измерительной техники, медицины и биологии.

Ультразвук -- звуковые волны, имеющие частоту выше воспринимаемых человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 Герц. По физической природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука, поэтому частотная граница между звуковыми и ультразвуковыми волнами условна. Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков КГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

Хотя первые ультразвуковые исследования были выполнены ещё в позапрошлом веке, основы широкого практического применения ультразвука были заложены позже, в начале XX в. Как область науки и техники ультразвук получил особенно бурное развитие в последние три-четыре десятилетия.

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для ориентировки в пространстве и общения (киты, дельфины, летучие мыши, грызуны).

Область применения ультразвука в наши дни чрезвычайно велика. Ультразвук применяется для воздействия на расплавленный металл, в металлургии, для обработки тончайших деталей в микроэлектронике и приборостроении, для измерения глубины, локации подводных препятствий в океане, для фиксации малейших изменений химического состава веществ. Рассматривая многообразие практических применений ультразвуковых колебаний и волн, нельзя не упомянуть об ультразвуковой медицинской диагностике, которая даёт в ряде случаев более детальную информацию и является более безопасной, чем другие методы диагностики. Об ультразвуковой терапии, занявшей прочное положение среди современных физиотерапевтических методов, и, наконец, о новейшем направлении применения ультразвука в медицине - ультразвуковой хирургии.

Давно известно, что ультразвуковое излучение можно сделать узконаправленным. Французский физик Поль Ланжевен впервые заметил повреждающее действие ультразвукового излучения на живые организмы. Результаты его наблюдений, а также сведения о том, что ультразвуковые волны могут проникать сквозь мягкие ткани человеческого организма, привели к тому, что с начала 1930-х гг. возник большой интерес к проблеме применения ультразвука для терапии различных заболеваний. Этот интерес не ослабевал и в дальнейшем, причем развитие медицинских приложений шло по самым различным направлениям; особенно широко ультразвук стал применяться в физиотерапии. Тем не менее, лишь сравнительно недавно стал намечаться истинно научный подход к анализу явлений, возникающих при взаимодействии ультразвукового излучения с биологической средой.

С применением ультразвука в медицине связано множество разных аспектов. Однако, при этом физика явления должна включать следующие процессы: распространение ультразвука в «биологической среде», такой как тело человека, взаимодействие ультразвука с компонентами этой среды и измерения и регистрация акустического излучения, как падающего на объект, так и возникающего в результате взаимодействия с ними.

Проблема интерпретации взаимодействия акустического излучения с биологической средой существенно упрощается, если последнюю рассматривать не как твердое тело, а как жидкость. В такой среде нет сдвиговых волн, поэтому теория распространения волн проще, чем для твердого тела. В диапазоне ультразвуковых частот, применяемых в медицинской акустике, это предположение справедливо почти для всех тканей тела, хотя имеются и исключения, например кость. То, что взаимодействие ультразвука с тканью можно смоделировать его взаимодействием с жидкостями, - важный фактор, повышающий практическую ценность медицинской ультразвуковой диагностики.

Ультразвук по определению не воспринимается непосредственно органами чувств человека, и поэтому необходимо использовать какой-то физический эффект или последовательность таких эффектов, чтобы действие ультразвука могло проявиться, причем главным образом количественно. Таким образом, выбор метода для конкретной задачи производится сточки зрения удобства его применения, а также точности измерения интересующего параметра акустического поля.

Методы визуализации и измерений

Методы ультразвуковой эхо-импульсной визуализации уже нашли широкое и разнообразное применение в медицине.

Основным элементом любой системы визуализации является электроакустический преобразователь, который служит для излучения зондирующего акустического импульса в объект и для приема акустических эхо-сигналов, переизлучаемых мишенью.

Приемник представляет собой своего рода систему сопряжения между преобразователем и дисплеем или системой записи, которые применяются для передачи наблюдателю информации, полученной с помощью ультразвука. В хороших системах эхо-сигналы на выходе преобразователя имеют большой динамический диапазон.

Эхо-импульсные методы в настоящее время стали широко применятся во многих областях медицины.

Акушерство

Акушерство - та область медицины, где эхо-импульсивные ультразвуковые методы наиболее прочно укоренились как составная часть медицинской практики. Рассматриваемые здесь четыре основных задачи иллюстрируют ценность многих полезных свойств ультразвуковых методов.

- Надежное определение положения плаценты - задача первостепенной важности в акушерской практике. С развитием техники, обеспечивающее высокое расширение по контрасту, эта процедура стала уже рутинной. Приборы, работающие в реальном времени, эргономически более выгодны, так как позволяют определять положения плаценты быстрее, чем статические сканеры.

- Второй вид процедур, ставших уже привычными, - оценка развития плода по измерению одного или более его размеров, таких как диаметр головки, окружность головки, площадь грудной клетки или живота. Так как даже очень малые изменения этих размеров могут иметь диагностическое значение, эти методы требуют высокой точности самой аппаратуры и методик ее применения.

- Третий вид процедур, появившийся не так давно и не столь еще укоренившийся в практике, - раннее обнаружение аномалий плода. Это приложение требует особенно хорошего пространственного разрешения и разрешения по контрасту, предпочтительно в сочетании с режимом реального времени и быстрым сканированием. Хорошие методики и качественная аппаратура позволяют обнаруживать такие дефекты, как недоразвитие (гибель) яйца, анэнцефалия (полное или почти полное отсутствие мозга), гидроцефалия (избыток жидкости в мозге, наблюдаемый в виде уширения желудочков), спинальные (позвоночные) дефекты, зачастую необнаружимые биохимическими методами, и дефекты желудочно-кишечного тракта. Вспомогательную, но очень важную роль играет ультразвук в процедуре амниоцентеза (пункции плодного пузыря) - взятии околоплодных вод для цитологических исследований и выявления возможных генетических нарушений. Ввод иглы при амниоцентезе под контролем ультразвуковой визуализации, обеспечивает значительно большую безопасность этой процедуры.

- Наконец, необходимо отметить ультразвуковое исследование движения плода. Это явление лишь недавно стало предметом подробного исследования. Сейчас происходит накопление большого количества информации как по движению конечностей плода и псевдодыханию, так и по динамике сердца и сосудов. Здесь основной интерес представляет исследования физиологии и развития плода; до обнаружения аномалий плода пока еще далеко.

Офтальмология

Может быть, из-за относительно малых размеров глаза офтальмология несколько выделилась из прочих областей применения ультразвука.

Ультразвук особенно удобен для точного определения размеров глаза, а также для исследования патологии и аномалий структур глаза в случае их непрозрачности и, следовательно, недоступности для обычного оптического исследования. Здесь также важна точность работы и калибровки аппаратуры, необходимо также уделить особое внимание эффектам, связанным с преломлением ультразвука в хрусталике и роговице.

Область позади глаза - орбита - доступна ультразвуковому обследованию через глаз, поэтому ультразвук вместе с компьютерной томографией стал одним из основных методов неинвазивного исследования патологий этой области. Структуры орбиты имеют малые размеры и требуют хорошего пространственного разрешения и разрешения по контрасту, что достижимо на высоких частотах. Практические сложности могут возникать, однако, если пытаться использовать аппаратуру, характеристики которой заимствованы из телевизионной техники, а полоса пропускания соответственно ограничена.

Исследование внутренних органов

Под таким заголовком можно рассмотреть множество разнообразных задач, в основном связанных с исследованием брюшной полости, где ультразвук используется для обнаружения и распознавания аномалий анатомических структур и тканей. Зачастую задача такова: есть подозрение на злокачественное образование и необходимо отличить его от доброкачественных или инфекционных по своей природе образований.

При исследовании печени кроме важной задачи обнаружения вторичных злокачественных образований ультразвук полезен для решения других задач, включая обнаружение заболеваний и непроходимости желчных протоков, исследования желчного пузыря с целью обнаружения камней и других патологий, исследование цирроза и других доброкачественных диффузных заболеваний печени, а также паразитарных заболеваний, таких как шистосоматоз. Почки - еще один орган, в котором необходимо исследовать различные злокачественные и доброкачественные состояния (включая жизнеспособность после трансплантации) с помощью ультразвука. Гинекологические исследования, в том числе исследования матки и яичников, в течение долгого времени являются главным направлением успешного применения ультразвука. Здесь зачастую также необходима дифференциация злокачественных и доброкачественных образований, что обычно требует наилучшего пространственного и контрастного разрешения. Аналогичные заключения применимы и к исследованию многих других внутренних органов и областей. Возрастает интерес к применению ультразвуковых эндоскопических зондов. Эти устройства, которые можно вводить в естественные полости тела при обследовании или применять при хирургическом вмешательстве, позволяют улучшить качество изображения из-за более высокой рабочей частоты и/или отсутствия на пути ультразвука таких неблагоприятных акустических сред, как газ или кость.

Приповерхносные и наружные органы

Щитовидная и молочная железы, хотя и легко доступны ультразвуковому обследованию, часто требуют использования водяного и ионного буфера, чтобы на изображение не повлияли аномалии ближней зоны поля. При исследовании щитовидной и паращитовидной железе основное применение ультразвука - различение кистозных и твердых образований, что возможно при хорошем подавлении шума и артефактов, вызванных реверберацией и боковыми лепестками излучения.

Захватывающая перспектива - скрининг для выявления самых разных признаков рака молочной железы при отсутствии выраженных симптомов, особенно у женщин с аномально высоким фактором риска. Технически здесь необходимо обнаружить аномалию размеров около 2мм в диаметре, когда эта аномалия относительно редко встречается в заданной группе, например, будет только у одной пациентке.

Методы визуализации молочной и щитовидной желез, часто использующие акустическую задержку распространения, применимы также к обследованию других приповерхностных тканей, например, при измерении толщины кожи, необходимо в радиационной терапии для облучения электронами, при обследовании приповерхностных кровеносных сосудов, таких как сонная артерия, а также при исследовании реакции опухолей на терапевтические воздействия.

Кардиология

Ультразвуковые методы широко применяются при обследовании сердца и прилегающих магистральных сосудов. Это связано, в частности, с возможностью быстрого получения пространственной информации, а также возможностью ее объединения с томографической визуализацией. Так, для обнаружения и распознавания аномалий движения клапанов сердца, в частности митрального, очень широко используется М-режим. При этом важно регистрировать движение клапанов вплоть до частот порядка 50Гц и, следовательно, с частотой повторения около 100Гц. Эта цифра, оставаясь значительно ниже упомянутого выше придела для эхо-импульсных приборов (около 5кГц), в сущности, недостижима при любых других методах исследования.

Неврология

До появления рентгеновской компьютерной томографии мозг было особенно сложно исследовать. Начиная с 1951г., в Лондонском королевском онкологическом госпитале предпринимались значительные усилия для применения ультразвука к этой задаче. К сожалению, этому мешают физические свойства черепа взрослого человека, поскольку череп представляет собой сильно поглощающую трехслойною структуру переменной толщины. Хотя было сделано несколько интересных попыток преодолеть эти трудности, в том числе с использованием управляемых многоэлементных решеток, когда датчик прилегает к ограниченной области черепа, а также с частичной автоматической компенсацией фазовой задержки для учета изменений толщины черепа, такое применение не встретило одобрения диагностов. Однако еще не затвердевший череп плода или новорожденного в акустическом плане не представляет значительных преград, связанных с возникновением затухания или преломления, и поэтому ультразвуковое обследование здесь применяется все чаще.

Ультразвука в терапии и хирургии

ультразвуковой диагностика медицина импульсный

Давно известно, что ультразвук, действуя на ткани, вызывает в них биологические изменения. Интерес к изучению этой проблемы обусловлен, с одной стороны, естественным опасением, связанным с возможным риском применения ультразвуковых диагностических систем для визуализации, а с другой - возможностью вызвать изменения в тканях для достижения терапевтического эффекта.

Терапевтический ультразвук может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей - не повреждающей нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях основная цель - вызвать управляемое избирательное разрушение в тканях.

Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Увеличение растяжимости коллагенсодержащих тканей

Основной фактор, который часто препятствует восстановлению мягкой ткани после ее повреждения, - это контрактура, возникающая в результате повреждения и ограничивающая нормальное движение. Слабое прогревание ткани может повысить ее эластичность. при дополнительном прогревании во время растягивающих упражнений улучшается гибкость коллагенсодержащих структур. Ультразвуковой нагрев приводит к увеличению растяжимости сухожилий. Рубцовая ткань также может стать более эластичной под воздействием ультразвука.

Повышение подвижности суставов

Амплитуда движений суставов в случае контрактуры может быть увеличена путем их нагрева. Для нагрева сустава, окруженного значительным слоем мягких тканей, ультразвуковой способ наиболее предпочтителен, поскольку ультразвук лучше других форм диатермической энергии проникает в мышечную ткань.

Болеутоляющее действие

Многие пациенты отмечают ослабление болей при тепловом воздействии на пораженные области. Обезболивающий эффект может быть как кратковременным, так и продолжительным. При некоторых заболеваниях применение ультразвука для уменьшения болей дает наилучшие результаты. Ультразвук ослабляет фантомные боли после ампутации конечностей, а также боли, вызванные образованием рубцов и невром. Механизмы болеутоляющего действия пока неясны; возможно, в них вносят вклад и нетепловые эффекты.

Изменения кровотока

При локальном нагреве ткани часто отмечаются сосудистые реакции, проявляющиеся даже на некотором расстоянии от места воздействия.

При нагреве ультразвуком или электромагнитном излучением наблюдаются сходные эффекты. При импульсном облучении (когда тепловые эффекты не велики) также изменяется кровоток. Эти изменения сохраняются около получаса после окончания процедуры.

Местное расширение сосудов увеличивает поступления кислорода в ткань и, следовательно, улучшает условия, в которых находятся клетки. Возможно, именно этим объясняется терапевтический эффект, а также нередко наблюдаемое усиление воспалительной реакции.

Уменьшение мышечного спазма

Прогревание может уменьшить мышечный спазм. По-видимому, это обусловлено седативным (успокаивающим) действием повышения температуры на периферические нервные окончания. Ультразвук также может быть использован для этой цели.

Степень физиологической реакции на прогревание зависит от большого числа факторов, включающих достигаемую температуру, время прогревания, размер прогреваемой зоны и скорость увеличения температуры. Ультразвук позволяет быстро нагреть строго определенную область. К анатомическим структурам, которые избирательно нагреваются ультразвуком, относятся богатые на коллаген поверхностные слои кости, надкостница, суставные мениски, синовиальная жидкость, суставные сумки, соединительные ткани, внутримышечные рубцы, мышечные волокна, оболочки сухожилий и главные нервные стволы.

В ряде случаев ультразвук может быть более эффективной формой диатермии, чем коротковолновые излучения, парафиновые аппликации и инфракрасное излучение.

Заключение

И так, в последние годы такой раздел физики как ультразвук занял очень уверенную позицию в медицине и набирает всё более широкое применение для различных целей, начиная от обследований и прогнозирования до эффективного лечения. Применение ультразвука существенно обогатило арсенал физиотерапевтических методов. Использование ультразвука позволило не только успешно бороться с некоторыми болезнями, но и повышать жизнеспособность и сопротивляемость здорового организма неблагоприятным внешним условиям. В настоящее время медицина уже не представляет свое существование без ультразвука, так как большинство современных приборов для медицинской диагностики основано на принципе ультразвука.

Области применения ультразвука в медицине чрезвычайно широки. В диагностических целях его используют для выявления заболеваний органов брюшной полости и почек, органов малого таза, щитовидной железы, молочных желез, лимфатической системы, сердца, сосудов, в акушерской и педиатрической практике. В виду физических свойств ультразвука, недоступными для данного метода являются органы, содержащие воздух и костные ткани.

Применение ультразвука, как, впрочем, и других лечебных воздействий, требует дозировки. При слишком низких интенсивностях и коротком времени воздействия ультразвук может оказаться неэффективным, а интенсивное и длительное воздействие может обусловить весьма существенные и не обязательно желательные изменения в организме.

Список используемой литературы

1. https://ru.wikipedia.org/wiki/Ультразвук.

2. http://femto.com.ua/articles/part_2/4203.html.

3. http://rybinskmed.ru/uzi/124.html.

4. http://www.golkom.ru/kme/20/3-270-4-1.html.

5. http://www.profmt.ru/statyi/Primenenie_ultrazvuka_v_meditcine.pdf.

Размещено на Allbest.ru

...

revolution.allbest.ru

6.6. Ультразвук и его применения в медицине

Ультразвуком (УЗ) называют механические колебания и волны с частотами более 20 кГц.

Верхним пределом ультразвуковых частот условно можно счи­тать 109 —1010 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния веще­ства, в котором распространяется ультразвуковая волна.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили элек­тромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта (см. § 12.7). Обратный пьезоэффект заключается в механической деформации тел под действием элект­рического поля. Основной частью такого излучателя (рис. 6.13, а) является пластина или стержень1из вещества с хорошо выражен­ными пьезоэлектрическими свойствами (кварц, сегнетова соль, ке­рамический материал на основе титаната бария и др.). На поверх­ность пластины в виде проводящих слоев нанесены электроды2. Если к электродам приложить переменное электрическое напряже­ние от генератора 3, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствую­щей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса (см. § 5.5). Так, для пластин толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли — 1,5 МГц и титаната бария — 2,75 МГц.

Приемник УЗ можно создать на осно­ве пьезоэлектрического эффекта (пря­мой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла (рис. 6.13, б), которая приводит при пьезоэффекте к генерации переменно­го электрического поля; соответствую­щее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмот­рим этот вопрос.

По физической природе УЗ, как и звук, является механической (упругой) волной. Однако длина волны УЗ существенно меньше длины звуко­вой волны. Так, например, в воде длины волн равны 1,4 м (1 кГц, звук), 1,4 мм (1 МГц, УЗ) и 1,4 мкм (1 ГГц, УЗ). Дифракция волн (см. § 19.5) существенно зависит от соотношения длины волны и размеров тел, на которых волна дифрагирует. Непрозрачное (для звука) тело размером 1 м не будет препятствием для звуковой волны с длиной 1,4 м, но станет преградой для УЗ-волны с длиной 1,4 мм: возникнет «УЗ-тень». Это позволяет в некоторых случаях не учиты­вать дифракцию УЗ-волн, рассматривая при преломлении и отраже­нии эти волны как лучи (аналогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений (см. § 6.4). Так, УЗ хорошо отражается на границах мышца — надкостница — кость, на поверхности по­лых органов и т. д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т. п. (УЗ-локация). При УЗ-локации используют как непрерыв­ное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и от­раженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультра­звука до исследуемого объекта и обратно. Зная скорость распрост­ранения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет от­ражаться из-за наличия тонкого слоя воздуха между излучателем и биологическим объектом (см. § 6.4). Чтобы исключить воздуш­ный слой, поверхность УЗ-излучателя покрывают слоем масла.

Скорость распространения ультразвуковых волн и их поглоще­ние существенно зависят от состояния среды; на этом основано ис­пользование ультразвука для изучения молекулярных свойств ве­щества. Исследования такого рода являются предметом молеку­лярной акустики.

Как видно из (5.56), интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значи­тельной интенсивности даже при сравнительно небольшой ампли­туде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим [см. (5.14)], что говорит о наличии су­щественных сил, действующих на частицы в биологических тка­нях при облучении УЗ.

Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости — кавитаций.

Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходит разогревание вещества, а также ионизация и диссо­циация молекул.

Физические процессы, обусловленные воздействием УЗ, вызы­вают в биологических объектах следующие основные эффекты:

- микровибрации на клеточном и субклеточном уровне;

- разрушение биомакромолекул;

- перестройку и повреждение биологических мембран, изменение проницаемости мембран (см. гл. 11);

- тепловое действие;

- разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в ос­новном разделить на два направления: методы, диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы с ис­пользованием главным образом импульсного излучения. Этоэх-энцефалография — определение опухолей и отека головного моз­га (на рис. 6.14 показан эхоэнцефалограф «Эхо-12»); ультразву­ковая кардиография — измерение размеров сердца в динамике; в офтальмологии — ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта До­плера изучают характер движения сердечных клапанов и измеря­ют скорость кровотока. С диагностической целью по скоростиультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физио­терапия. На рис. 6.15 показан используемый для этих целей ап­парат УТП-ЗМ. Воздействие ультразвуком на пациента произво­дят с помощью специальной излучательной головки аппарата

Обычно для терапевтических целей применяют ультразвук часто­той 800 кГц, средняя его интенсивность около 1 Вт/см2и меньше.

Первичными механизмами ультразвуковой терапии являются механическое и тепловое действия на ткань.

При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани.

Способность ультразвука дробить тела, помещенные в жид­кость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарствен­ных веществ, полученные с помощью ультразвука.

В настоящее время разработан новый метод «сваривания» по­врежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Губительное воздействие ультразвука на микроорганизмы ис­пользуется для стерилизации.

Интересно применение ультразвука для слепых. Благодаря ультразвуковой локации с помощью портативного прибора «Ори­ентир» можно обнаруживать предметы и определять их характер на расстоянии до 10 м.

Перечисленные примеры не исчерпывают всех медико-биоло­гических применений ультразвука, перспектива расширения этих приложений поистине огромна. Так, можно ожидать, напри­мер, появления принципиально новых методов диагностики с внедрением в медицину ультразвуковой голографии (см. § 19.8).

studfiles.net

Ультразвук и его применения в медицине

Ультразвуком (УЗ) называют механические колебания и волны с частотами более 20 кГц.

Верхним пределом ультразвуковых частот условно можно счи­тать 109 —1010 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния веще­ства, в котором распространяется ультразвуковая волна.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили элек­тромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта (см. § 12.7). Обратный пьезоэффект заключается в механической деформации тел под действием элект­рического поля. Основной частью такого излучателя (рис. 6.13, а) является пластина или стержень 1 из вещества с хорошо выражен­ными пьезоэлектрическими свойствами (кварц, сегнетова соль, ке­рамический материал на основе титаната бария и др.). На поверх­ность пластины в виде проводящих слоев нанесены электроды 2. Если к электродам приложить переменное электрическое напряже­ние от генератора 3, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствую­щей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса (см. § 5.5). Так, для пластин толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли — 1,5 МГц и титаната бария — 2,75 МГц.

Приемник УЗ можно создать на осно­ве пьезоэлектрического эффекта (пря­мой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла (рис. 6.13, б), которая приводит при пьезоэффекте к генерации переменно­го электрического поля; соответствую­щее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмот­рим этот вопрос.

По физической природе УЗ, как и звук, является механической (упругой) волной. Однако длина волны УЗ существенно меньше длины звуко­вой волны. Так, например, в воде длины волн равны 1,4 м (1 кГц, звук), 1,4 мм (1 МГц, УЗ) и 1,4 мкм (1 ГГц, УЗ). Дифракция волн (см. § 19.5) существенно зависит от соотношения длины волны и размеров тел, на которых волна дифрагирует. Непрозрачное (для звука) тело размером 1 м не будет препятствием для звуковой волны с длиной 1,4 м, но станет преградой для УЗ-волны с длиной 1,4 мм: возникнет «УЗ-тень». Это позволяет в некоторых случаях не учиты­вать дифракцию УЗ-волн, рассматривая при преломлении и отраже­нии эти волны как лучи (аналогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений (см. § 6.4). Так, УЗ хорошо отражается на границах мышца — надкостница — кость, на поверхности по­лых органов и т. д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т. п. (УЗ-локация). При УЗ-локации используют как непрерыв­ное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и от­раженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультра­звука до исследуемого объекта и обратно. Зная скорость распрост­ранения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет от­ражаться из-за наличия тонкого слоя воздуха между излучателем и биологическим объектом (см. § 6.4). Чтобы исключить воздуш­ный слой, поверхность УЗ-излучателя покрывают слоем масла.

Скорость распространения ультразвуковых волн и их поглоще­ние существенно зависят от состояния среды; на этом основано ис­пользование ультразвука для изучения молекулярных свойств ве­щества. Исследования такого рода являются предметом молеку­лярной акустики.

Как видно из (5.56), интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значи­тельной интенсивности даже при сравнительно небольшой ампли­туде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим [см. (5.14)], что говорит о наличии су­щественных сил, действующих на частицы в биологических тка­нях при облучении УЗ.

Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости — кавитаций.

Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходит разогревание вещества, а также ионизация и диссо­циация молекул.

Физические процессы, обусловленные воздействием УЗ, вызы­вают в биологических объектах следующие основные эффекты:

- микровибрации на клеточном и субклеточном уровне;

- разрушение биомакромолекул;

- перестройку и повреждение биологических мембран, изменение проницаемости мембран (см. гл. 11);

- тепловое действие;

- разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в ос­новном разделить на два направления: методы, диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы с ис­пользованием главным образом импульсного излучения. Это эх-энцефалография — определение опухолей и отека головного моз­га (на рис. 6.14 показан эхоэнцефалограф «Эхо-12»); ультразву­ковая кардиография — измерение размеров сердца в динамике; в офтальмологии — ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта До­плера изучают характер движения сердечных клапанов и измеря­ют скорость кровотока. С диагностической целью по скорости ультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физио­терапия. На рис. 6.15показан используемый для этих целей ап­парат УТП-ЗМ. Воздействие ультразвуком на пациента произво­дят с помощью специальной излучательной головки аппарата

Обычно для терапевтических целей применяют ультразвук часто­той 800 кГц, средняя его интенсивность около 1 Вт/см2 и меньше.

Первичными механизмами ультразвуковой терапии являются механическое и тепловое действия на ткань.

При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани.

Способность ультразвука дробить тела, помещенные в жид­кость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарствен­ных веществ, полученные с помощью ультразвука.

В настоящее время разработан новый метод «сваривания» по­врежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Губительное воздействие ультразвука на микроорганизмы ис­пользуется для стерилизации.

Интересно применение ультразвука для слепых. Благодаря ультразвуковой локации с помощью портативного прибора «Ори­ентир» можно обнаруживать предметы и определять их характер на расстоянии до 10 м.

Перечисленные примеры не исчерпывают всех медико-биоло­гических применений ультразвука, перспектива расширения этих приложений поистине огромна. Так, можно ожидать, напри­мер, появления принципиально новых методов диагностики с внедрением в медицину ультразвуковой голографии (см. § 19.8).

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2

Инфразвук

Инфразвуком называют механические (упругие) волны с частотами, меньшими тех, которые воспринимает ухо че­ловека (< 20 Гц).

Источниками инфразвука могут быть как естественные объек­ты (море, землетрясение, грозовые разряды и др.), так и искусст­венные (взрывы, автомашины, станки и др.).

Инфразвук часто сопровождается слышимым шумом, напри­мер в автомашине, поэтому возникают трудности при измерении и исследовании собственно инфразвуковых колебаний.

Для инфразвука характерно слабое поглощение разными сре­дами, поэтому он распространяется на значительное расстояние. Это позволяет по распространению инфразвука в земной коре обнаруживать взрыв на большом удалении его от источника, по из­меренным инфразвуковым волнам прогнозировать цунами и т. д. Так как длина волны инфразвука больше, чем у слышимых зву­ков, то инфразвуковые волны сильнее дифрагируют и проникают в помещения, обходя преграды.

Инфразвук оказывает неблагоприятное влияние на функци­ональное состояние ряда систем организма: вызывает усталость, головную боль, сонливость, раздражение и др. Предполагается, что первичный механизм действия инфразвука на организм имеет резонансную природу. Резонанс наступает при близких значени­ях частоты вынуждающей силы и частоты собственных колеба­ний (см. § 5.5). Частоты собственных колебаний тела человека в положении лежа (3—4 Гц), стоя (5—12 Гц), частоты собственных колебаний грудной клетки (5—8 Гц), брюшной полости (3—4 Гц) и т. д. соответствуют частоте инфразвуков.

Снижение уровня интенсивности инфразвуков в жилых, про­изводственных и транспортных помещениях — одна из задач ги­гиены.

В технике механические колебания различных конструкций и машин получили название вибраций.

Они оказывают воздействие и на человека, который соприкаса­ется с вибрирующими объектами. Это воздействие может быть как вредным и приводящим в определенных условиях к вибраци­онной болезни, так и полезным, лечебным (вибротерапия и вибро­массаж).

Основные физические характеристики вибраций совпадают с характеристиками механических колебаний тел, это:

- частота колебаний или гармонический спектр ангармонического колебания;

- амплитуды смещения, скорости и ускорения;

- энергия и средняя мощность колебаний.

Кроме того, для понимания действия вибраций на биологиче­ский объект важно представлять себе распространение и затуха­ние колебаний в теле. При исследовании этого вопроса использу­ют модели, состоящие из инерционных масс, упругих и вязких элементов (см. § 8.3).

Вибрации являются источником слышимых звуков, ультра­звуков и инфразвуков.

Лекция 5

Основные понятия гидродинамики. Условие неразрывности струи. Уравнение Бернулли.

Внутреннее трение (вязкость) жидкости. Ньютоновские и неньюто­новские жидкости. Реологические свойства крови, плазмы, сыворотки. Факторы, влияющие на вязкость крови в живом организме. Течение вяз­кой жидкости. Формула Пуазейля. Гидравлическое сопротивление. Расп­ределение давления и скорости крови в сосудистой системе.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 3

Течение и свойства жидкостей

К жидкостям относят вещества, которые по своим свойствам занимают промежуточное положение между газами и твер­дыми телами Жидкие среды составляют наибольшую часть организма, их перемещение обеспечивает обмен веществ и снабжение клеток кислородом, поэтому механические свой­ства и течение жидкостей представляют особый интерес для медиков и биологов.

Материал, изложенный в главе, имеет отношение к гидроди­намике — разделу физики, в котором изучают вопросы дви­жения несжимаемых жидкостей и взаимодействие их при этом с окружающими твердыми телами, и к реологии — уче­нию о деформациях и текучести вещества

Рассмотрим трубку тока малого сечения (рис. 1). Жидкость, выделенного объема, переместится из положении 1 в положение 2. Так как течение стационарное, то никаких энергетических изменений с жидкостью не произойдёт. Изменение энергии (потенциальной и кинетической) жидкости при перемещении объёма от положения 1 к 2 равно работе, которую необходимо совершить над жидкостью для перемещения выделенного объёма из положения 1 в положение 2. Считая объёмы цилиндрическими, можно записать:

V=S1l1=S2l2 (2)

Если скорость жидкости в пределах каждого заштрихованного объёма одинакова (равна v1 и v2 для положений 1 и 2 соответственно), то изменение кинетической энергии жидкости равно:, (3)

так как m=rS1l1=rS2l2, где r - плотность жидкости.

Вычислим работу внешних сил, действующих на жидкость. Силы со стороны соседних трубок тока нормальны к поверхности рассматриваемой трубки и работы не совершают. Работа сил, оказывающих давления р1 и р2 на торцы объёма 1 - 2 при его перемещении,

 
 

Не нашли то, что искали? Воспользуйтесь поиском:

Page 4

Схема трубки тока жидкости для вывода формулы Бернулли.

Рис.

AР=F1l1-F2l2=p1S1l1-p2S2l2. (4)

Работа силы тяжести:

АТ=mgh2-mgh3=rS1l1gh2-rS2l2gh3. (5)

DEk= AР+ АТ,

(rS2l2V22-rS1l1V12)/2 =

= p1S1l1-p2S2l2+ +rS1l1gh2 - rS2l2gh3 (6)

откуда сокращая на S1l1 = S2l2 и перегруппировывая слагаемые, имеем:

Так как выбор сечения трубки произволен, то индексы можно опустить:

.(7)

- этоуравнение Бернулли.

Слагаемые, входящие в уравнение Бернулли имеют размерность и смысл давления. Давление р называютстатическим; оно не связано с движением жидкости и может быть измерено, например, манометром, перемещающимся вместе с жидкостью.

Давление называютдинамическим;оно обусловлено движением жидкости и проявляется при ее торможении. Сумма статического и динамического давлений естьполное давление:

рП = р + .

Давление rgh -весовое. В состоянии невесомости весовое давление отсутствует, с увеличением перегрузок оно возрастает.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 5

В этом случае, как и в гидростатистике, разность давлений обусловлена разностью весов соответствующих столбов жидкости.

Наклонная трубка тока постоянного сечения.

Рассмотрим некоторые частные случаи, вытекающие из уравнения Бернулли.

В различных точках линии тока идеальной жидкости сумма статического, динамического и весового давлений одинакова.

V = const, тогда p1 + rgh2 = p2 + rh3g или p2 - p1 = rg(h2 - h3),

Dp = rgDh.

Всасывающее действие струи.

Так как h2 = h3 (рис. 2) , то

Полное давление в разных сечениях горизонтальной трубки тока одинаково. В более узких местах S2 < S1, V2 > V1, p2 < p1.

 
 

Не нашли то, что искали? Воспользуйтесь поиском:

Page 6

Можно сделать столь узкое сечение трубки, что вследствие малого давления (ниже атмосферного) в это сечение будет засасываться воздух или жидкость (так называемое всасывающее действие струи). Это явление используют в водоструйных насосах, ингаляторах и пульверизаторах.

Выберем в движущемся потоке жидкости точки 1 и 2, лежащие на одной линии тока (рис. 3).

 
 

Так как трубка горизонтальная, а V2 = 0, то на основании (7) запишем:

, откуда .

Трубку 2, изображенную на рисунке называют трубкой Пито, по высоте h3 столба жидкости в которой измеряют полное давление р2 .

Статическое давление р1 движущейся жидкости определяют при помощи трубки 1 по высоте h2 столба.

При течении реальной жидкости отдельные слои ее воздейст­вуют друг на друга с силами, касательными к слоям. Это явление называют внутренним трением или вязкостью.

Рассмотрим течение вязкой жидкости между двумя твердыми пластинками (рис. 7.1), из которых нижняя неподвижна, а верхняя движется со скоростью uВ. Условно представим жидкость в виде нескольких слоев 1, 2, 3 и т. д. Слой, «прилипший» ко дну, неподвижен. По мере удаления от дна (нижняя пластинка) слои жид­кости имеют все большие скорости (u1 < u2 < u3 < ...), максимальная скорость uВ будет у слоя, который «прилип» к верхней пластинке.

Рис. 7.1

Слои воздействуют друг на друга. Так, например, третий слой стремится ускорить движение второго, носам испытывает торможение с его стороны, а ускоряется четвертым слоем и т. д. Сила внутреннего трения пропорциональна площади S взаимодействующих слоев и тем больше, чем больше их относительная скорость. Так как разде­ление на слои условно, то принято выражать силу в зависимости от изменения скорости на некотором участке в направлении х, перпендикулярном скорости, отнесенного к длине этого участка, т. е. от величины du/dx — градиента скорости (скорости сдвига):

(7.1)

Это уравнение Ньютона.Здесь h — коэффициент пропорци­ональности, называемый коэффициентом внутреннего трения, или динамической вязкостью (или просто вязкостью). Вязкость зави­сит от состояния и молекулярных свойств жидкости (или газа).

Единицей вязкости является паскалъ-секунда (Па • с). В системе СГС вязкость выражают в пуазах (П): 1 Па • с = 10 П.

Для многих жидкостей вязкость не зависит от градиента ско­рости, такие жидкости подчиняются уравнению Ньютона (7.1), и их называют ньютоновскими. Жидкости, не подчиняющиеся уравнению (7.1), относят к неньютоновским. Иногда вязкость ньютоновских жидкостей называют нормальной, а неньютонов­ских — аномальной.

Жидкости, состоящие из сложных и крупных молекул, напри­мер растворы полимеров, и образующие благодаря сцеплению мо­лекул или частиц пространственные структуры, являются ненью­тоновскими. Их вязкость при прочих равных условиях много больше, чем у простых жидкостей. Увеличение вязкости происхо­дит потому, что при течении этих жидкостей работа внешней си­лы затрачивается не только на преодоление истинной, ньютонов­ской, вязкости, но и на разрушение структуры. Кровь является неньютоновской жидкостью.

Течение вязкой жидкости по трубам. Формула Пуазейля

Течение вязкой жидкости по трубам представляет для медици­ны особый интерес, так как кровеносная система состоит в основ­ном из цилиндрических сосудов разного диаметра.

Вследствие симметрии ясно, что в трубе частицы текущей жидкости, равноудаленные от оси, имеют одинаковую скорость. Наибольшей скоростью обладают частицы, движущиеся вдоль оси трубы; примыкающий к трубе слой жидкости неподвижен.

Примерное распределение скорости сло­ев v жидкости в сечении трубы показано на рис. 7.2.

Для определения зависимости ско­рости слоев от их расстояния r от оси выделим мысленно цилиндрический объем жидкости некоторого радиуса r и длины l (рис. 7.3, а). На торцах этого цилиндра поддерживаются давления pl и р2 соответственно, что обусловливает результирующую силу

(7.2)

На боковую поверхность цилиндра со стороны окружающего слоя жидкости действует сила внутреннего трения, равная [см. (7.1)]

(7.3)

где S = 2prl — площадь боковой поверхности цилиндра. Так как жидкость движется равномерно, то силы, действующие на выде­ленный цилиндр, уравновешены: F = Fтр . Подставляя в это равен­ство (7.2) и (7.3), получаем

(7.4)

Знак «-» в правой части уравнения обусловлен тем, что du/dr < 0 (скорость уменьшается с увеличением r). Из (7.4) имеем

Проинтегрируем это уравнение:

(7.5)

здесь нижние пределы соответствуют слою, «прилипшему» к внут­ренней поверхности трубы (u = 0 при r = R), а верхние пределы — переменные. После интегрирования (7.5) получаем параболиче­скую зависимость скорости слоев жидкости от расстояния их до оси трубы (см. огибающую концов векторов скорости на рис. 7.2):

Наибольшую скорость имеет слой, текущий вдоль оси трубы (r = 0):

Установим, от каких факторов зависит объем Q жидкости, про­текающей через горизонтальную трубу за 1 с. Для этого выделим цилиндрический слой радиусом r и толщиной dr. Площадь сече­ния этого слоя (рис. 7.3, б) dS = 2prdr. Так как слой тонкий, то можно считать, что он перемещается с одинаковой скоростью u. За 1 с слой переносит объем жидкости

dQ = udS = u • 2prdr/. (7.7)

Подставляя (7.6) в (7.7), получаем

откуда интегрированием по всему сечению находим

Зависимость объема жидкости Q, протекающей через горизон­тальную трубу радиуса R за 1 с, определяется формулой Пуазейля (7.8), где h — вязкость жидкости, а р1 - р2 — разность давле­ний, поддерживаемая на торцах трубы длиной l.

Как видно из (7.8), при заданных внешних условиях (р1 и р2) через трубу протекает тем больший объем жидкости, чем меньше ее вязкость и больше радиус трубы.

Проведем аналогию между формулой Пуазейля (7.8) и законом Ома для участка цепи без источника тока. Разность потенциалов соответствует разности давлений на концах трубы, сила тока — объему жидкости, протекающей через сечение трубы в 1 с, элект­рическое сопротивление — гидравлическому сопротивлению:

(7.9)

Гидравлическое сопротивление тем больше, чем больше вязкость h, длина l трубы и меньше площадь поперечного сечения. Аналогия между электрическим и гидравлическим сопротивлениями позво­ляет в некоторых случаях использовать правило нахождения элект­рического сопротивления последовательного и параллельного соеди­нений проводников для определения гидравлического сопротивления системы последовательно или параллельно соединенных труб. Так, например, общее гидравлическое сопротивление трех труб, со­единенных последовательно (рис. 7.4, а) и параллельно (рис. 7.4, б), вычисляется соответственно по формулам:

Х = Х1 + Хг + Х3,(7.10)

(7.11)

Чтобы придать уравнению Пуазейля более общее выражение, справедливое и для труб переменного сечения, заменим (р1 - р2)/dl градиентом давления dp/dl, и тогда

(7.12)

Установим в разных местах горизонтальной цилиндрической трубы разного сечения, по которой течет вязкая жидкость, мано­метрические трубки (рис. 7.5, а). Они показывают, что статическое давление вдоль трубы переменного сечения убывает пропорци­онально l : dp/dl = const. Так как величина Q одинакова (несжимае­мая жидкость), то [см. (7.12)] градиент давления больше в трубах меньшего радиуса. График зависимости давления от расстояния вдоль труб разного радиуса приближенно показан на рис. 7.5, б

Физические вопросы гемодинамики

Гемодинамикой называют область биомеханики, в которой исследуется движение крови по сосудистой системе. Физи­ческой основой гемодинамики является гидродинамика. Те­чение крови зависит как от свойств крови, так и от свойств кровеносных сосудов

В главе рассматриваются также физические основы работы некоторых технических устройств, используемых в связи с кровообращением.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 7

Факторы, влияющие на вязкость крови в организме.

Вязкость крови в живом организме зависит, в основном, от скорости сдвига, свойств плазмы, относительного объема эритроцитов и механических свойств эритроцитов, температуры.

Скоростью сдвига называют величину градиента скорости движения параллельных слоев жидкости (). Вязкость крови зависит от скорости сдвига в диапазоне 0,1-120 с-1. При скорости сдвига>100 с-1 вязкость достигает значения асимптотической вязкости и при дальнейшем увеличении скорости сдвига (>200 с-1 ) не меняется (рис.10).

Рис. 10. Зависимость вязкости крови и ньютоновской жидкости от скорости сдвига.

При низких скоростях сдвига в крови эритроциты выстраиваются в монетные столбики. Это определяет высокую вязкость крови, которая, строго говоря, в этом случае не может рассматриваться как чистая жидкость. По мере увеличения скорости сдвига, агрегаты эритроцитов распадаются, и вязкость крови снижается, приближаясь постепенно к некоторому пределу. При высоких скоростях сдвига, например, в крупных артериях, кровь можно рассматривать как ньютоновскую жидкость. Только в этом случае кровь рассматривается как суспензия форменных элементов и ее свойства можно изучать in vitro на модели суспензии эритроцитов в физиологическом растворе.

Плазма.

Плазма ведёт себя как линейно-вязкая ньютоновская жидкость с относительной вязкостью 1,2. При рассмотрении течения в артериальных сосудах плазма принимается несжимаемой и вязкой с кинематической вязкостью 0,04 см2/с.

Неньютоновский характер крови обусловлен наличием форменных элементов крови, в основном, эритроцитов.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 8

Гематокрит.

Одним из основных факторов, определяющих вязкость крови, является объемная концентрация эритроцитов. Отношение суммарного объема эритроцитов к объему крови называют гематокритом. В норме гематокрит равен 0,4-0,5 отн. ед. С повышением гематокрита вязкость крови увеличивается (рис.11).

Рис. 11.Зависимость вязкости крови от показателя гематокрита.  

В кровеносных сосудах происходит ориентация и агрегация эритроцитов в монетные столбики, а в капиллярах деформация эритроцитов. Условия образования агрегатов в крупных и мелких сосудах различны. Это связано с соотношением размеров сосуда, эритроцита (dэр»8 мкм) и агрегата (dагр=10dэр) (см. таблицу 2). Плотность эритроцитов возрастает по мере приближения к оси кровеносного сосуда, что приводит к уплощению профиля скорости, являющегося параболическим в случае ньютоновской жидкости. В прилегающих к стенке сосуда областях кровь оказывается менее плотной. Этот обедненный эритроцитами слой крови (@ 1 мкм) является наименее вязким (hотн @ 2, вместо 3,3). Кровь здесь движется быстрее.

В мелких сосудах толщина пристеночного слоя составляет существенную часть поперечного сечения, и, следовательно, гематокрит в капиллярах заметно меньше, чем в крупных сосудах.

Таблица 2.

Сосуды Соотношение размеров объектов Особенности структуры течения крови
Крупные сосуды (аорта, артерии) dсос >dагр, dсос >>dэр   Градиент скорости увеличивается. Агрегаты распадаются на отдельные эритроциты. Вязкость уменьшается.
Мелкие сосуды (мелкие артерии, артериолы) dсос »dагр, dсос =(5-20)dэр   Градиент скорости небольшой. Эритроциты собираются в агрегаты в виде монетных столбиков. Вязкость крови = 0.005 Па.с.
Капилляры dсос Reкр), то движение жидкости турбулентное. Например, для гладких цилиндрических труб Reкр » 2300. Так как число Рейнольдса зависит от вязкости и плотности жидкости, то удобно ввести их отношение, называемое кинема­тической вязкостью:

Используя это понятие, число Рейнольдса можно выразить в виде

Re= uD/v. (7.17)

Единицей кинематической вязкости является квадратный метр в секунду (м2/с), в системе СГС — стоке (Ст); соотношение между ними: 1 Ст = 10-4 м2/с.

Кинематическая вязкость полнее, чем динамическая, учиты­вает влияние внутреннего трения на характер течения жидкости или газа. Так, вязкость воды приблизительно в 100 раз больше, чем воздуха (при 0 °С), но кинематическая вязкость воды в 10 раз меньше, чем воздуха, и поэтому вязкость сильнее влияет на ха­рактер течения воздуха, чем воды.

Как видно из (7.17), характер течения жидкости или газа суще­ственно зависит от размеров трубы. В широких трубах даже при сравнительно небольших скоростях может возникнуть турбулент­ное движение. Так, например, в трубке диаметром 2 мм течение во­ды становится турбулентным при скорости более 127 см/с, а в трубе диаметром 2 см — уже при скорости примерно 12 см/с (температура 16 °С). Течение крови по такой трубе стало бы турбулентным при скорости 50 см/с, но практически в кровеносных сосудах диаметром 2 см турбулентное течение возникает даже при меньшей скорости.

Течение крови в артериях в норме является ламинарным, не­большая турбулентность возникает вблизи клапанов сердца. При патологии, когда вязкость бывает меньше нормы, число Рей­нольдса может превышать критическое значение и движение ста­нет турбулентным.

Турбулентное течение связано с дополнительной затратой энергии при движении жидкости, что в случае крови приводит к добавочной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболеваний. Этот шум прослушивают на плечевой артерии при измерении давления крови.

Течение воздуха в носовой полости в норме ламинарное. Одна­ко при воспалении или каких-либо других отклонениях от нормы оно может стать турбулентным, что повлечет дополнительную ра­боту дыхательных мышц.

Число Рейнольдса является критерием подобия. При модели­ровании гидро- и аэродинамических систем, в частности крове­носной системы, модель должна иметь такое же число Рейнольд­са, как и натура, в противном случае не будет соответствия между ними. Это относится также и к моделированию обтекания тел при движении их в жидкости или газе. Из (7.17) видно, что уменьше­ние размеров модели по сравнению с натурой должно быть ском­пенсировано увеличением скорости течения или уменьшением кинематической вязкости модельной жидкости или газа.

Физические вопросы гемодинамики

Гемодинамикой называют область биомеханики, в которой исследуется движение крови по сосудистой системе. Физи­ческой основой гемодинамики является гидродинамика Те­чение крови зависит как от свойств крови, так и от свойств кровеносных сосудов

В главе рассматриваются также физические основы работы некоторых технических устройств, используемых в связи с кровообращением.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 10

При сокращении сердечной мышцы (систола) кровь выбрасыва­ется из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к перифе­рии. Упругость стенок сосудов приводит к тому, что во время сис­толы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы, т. е. крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давле­ние человека в норме равно приблизительно 16 кПа. Во время рас­слабления сердца (диастола) растянутые кровеносные сосуды спа­дают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление, приблизительно равное 11 кПа.

Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в пе­риод систолы, называют пульсовой волной.

Пульсовая волна распространяется со скоростью 5—10 м/с и даже более. Следовательно, за время систолы (около 0,3 с) она должна распространиться на расстояние 1,5—3 м, что больше расстояния от сердца к конечностям. Это означает, что начало пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте. Профиль части артерии схематически показан на рис. 9.6: а — после прохождения пульсовой волны, б — в артерии начало пульсовой волны, в — в артерии пульсовая волна, г — начинается спад повышенного давления.

Пульсовой волне будет соответствовать пульсирование скорости кровотока в крупных артериях, однако скорость крови (максимальное значение 0,3—0,5 м/с) существенно меньше скорости распространения пульсовой волны.

Из модельного опыта и из общих представлений о работе сердца ясно, что пульсовая волна не является синусоидальной (гармонической). Как всякий периодический процесс, пульсовая волна может быть представлена суммой гармонических волн (см. § 5.4). Поэтому уделим внимание, как некоторой модели, гармонической пульсовой волне.

Предположим, что гармоническая волна [см. (5.48)] распрост­раняется по сосуду вдоль оси X со скоростью u. Вязкость крови и упруговязкие свойства стенок сосуда уменьшают амплитуду вол­ны. Можно считать (см., например, § 5.1), что затухание волны будет экспоненциальным. На основании этого можно записать следующее уравнение для пульсовой волны:

(9.12)

где р0 — амплитуда давления в пульсовой волне; х — расстояние до произвольной точки от источника колебаний (сердца); t — вре­мя; w — круговая частота колебаний; c — некоторая константа, определяющая затухание волны. Длину пульсовой волны можно найти из формулы

(9.13)

Волна давления представляет некоторое «избыточное» давле­ние. Поэтому с учетом «основного» давления ра (атмосферное давление или давление в среде, окружающей сосуд) можно измене­ние давления записать следующим образом:

. (9.14)

Как видно из (9.14), по мере продвижения крови (по мере уве­личения х) колебания давления сглаживаются. Схематично на рис. 9.7 показано колебание давления в аорте вблизи сердца (а) и в артериолах (б). Графики даны в предположении модели гармо­нической пульсовой волны.

На рис. 9.8 приведены экспериментальные графики, показы­вающие изменение среднего значения давления и скорости икр кровотока в зависимости от типа кровеносных сосудов. Гидроста­тическое давление крови не учитывается. Давление — избыточ­ное над атмосферным. Заштрихованная область соответствует ко­лебанию давления (пульсовая волна).

Скорость пульсовой волны в крупных сосудах следующим об­разом зависит от их параметров (формула Моенса—Кортевега):

(9.15)

где Е — модуль упругости, r — плотность вещества сосуда, h — толщина стенки сосуда, d — диаметр сосуда.

Рис. 9.7 Рис. 9.8

Интересно сопоставить (9.15) с выражением для скорости рас­пространения звука в тонком стержне:

(9.16)

У человека с возрастом модуль упругости сосудов возрастает, поэтому, как следует из (9.15), становится больше и скорость пульсовой волны.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 11

Работа, совершаемая сердцем, затрачивается на преодоление сил давления и сообщение крови кинетической энергии.

Рассчитаем работу, совершаемую при однократном сокраще­нии левого желудочка. Изобразим Vу — ударный объем крови — в виде цилиндра (рис. 9.9). Можно считать, что сердце продавлива­ет этот объем по аорте сечением S на расстояние l при среднем давлении р. Совершаемая при этом работа

А1 = Fl = pSl = pVy.

На сообщение кинетической энергии этому объему крови за­трачена работа

А2 = mu2/2 = rVyu2/2,

где r — плотность крови,u— скорость крови в аорте. Таким обра­зом, работа левого желудочка сердца при сокращении равна

Ал=А1 + А2=рVу + rVуu2/2.

Так как работа правого желудочка принимается равной 0,2 от ра­боты левого, то работа всего сердца при однократном сокращении

А = Ал + 0,2Ал = 1,2 (pVy + pVyu2/2). (9.17)

Формула (9.17) справедлива как для покоя, так и для активно­го состояния организма. Эти состояния отличаются разной скоро­стью кровотока.

Подставив в формулу (9.17) значения р = 13 кПа, Vy = 60 мл = 6 • 10-5 м3, r = 1,05 • 103 кг/м3, u = 0,5 м/с, полу­чим работу разового сокращения серд­ца в состоянии покоя: Al » 1 Дж. Счи­тая, что в среднем сердце совершает одно сокращение в секунду, найдем работу сердца за сутки: Ас = 86 400 Дж. При актив­ной мышечной деятельности работа сердца может возрасти в несколько раз.

Если учесть, что продолжительность сис­толы около t » 0,3 с, то средняя мощность сердца за время одного сокращения (W) = А1/t = = 3,ЗВт.

При операциях на сердце, которые требу­ют временного выключения его из системы кровообращения, пользуются специальными аппаратами искусственного кровообращения (рис. 9.10). По существу, этот аппарат явля­ется сочетанием искусственного сердца (на­сосная система) с искусственными легкими (оксигенатор — система, обеспечивающая насыщение крови кислородом).

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru


Смотрите также