Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Реология что это такое


1. Основные понятия и законы реологии

Реология (от греч. rheos - течение, поток и logos - слово, учение) - это наука о деформациях и текучести веществ. В общенаучном плане реологию, по мнению М. Рейнера, следует рассматривать как раздел физики, который ближе всего примыкает к механике, а по мнению П.А.Ребиндера - к физико-химической механике.

Термин «Реология» ввёл американский учёный Ю. Бингам, которому принадлежат ценные реологические исследования жидкостей и дисперсных систем. Официально термин «Реология» принят на 3-м симпозиуме по пластичности (1929, США), однако отдельные положения реологии были установлены задолго до этого. Реология тесно переплетается с гидромеханикой, теориями упругости, пластичности и ползучести; в ней широко пользуются методами вискозиметрии. В основу реологии легли законы И. Ньютона о сопротивлении движению вязкой жидкости, Навье — Стокса уравнения движения несжимаемой вязкой жидкости, работы Дж. Максвелла, У. Томсона и др. Значительный вклад внесён русскими учёными: Д. И. Менделеевым, Н. П. Петровым, Ф. Н. Шведовым и советскими учёными П. А. Ребиндером, М. П. Воларовичем, Г. В. Виноградовым и др.

Основной задачей реологии является изучение закономерностей поведения различных материалов под действием деформирующих усилий. При этом рассматриваются процессы, связанные с необратимыми остаточными деформациями и течением разнообразных вязких и пластичных материалов (неньютоновских жидкостей, дисперсных систем и др.), а также явления релаксации напряжений, упругого последействия и т.д.

В настоящее время трудно дать такое определение предмета реологии, которое в равной мере отражало бы представления различных научных школ о задачах реологической науки и ее месте в ряду других областей знания. Это обусловлено исключительно широким разнообразием процессов деформации, которыми занимается реология, а следовательно, и разнообразием областей науки и техники, изучающих эти процессы и претендующих на реологию как на «свою» область (например, биореология, реология полимеров, реология дисперсных систем и т.п.).

Большинство материалов (твердых и жидких), используемых в нефтяной отрасли, и в первую очередь сама нефть, являются дисперсными системами. Изучение реологических свойств этих материалов входит в круг задач специального раздела общей реологии - реологии дисперсных систем, которая является также одним из разделов коллоидной химии - науки о дисперсных системах и поверхностных (межфазных) явлениях. Реологические параметры дисперсной системы позволяют судить о фундаментальном свойстве дисперсных частиц - о величине сил, действующих между частицами, о структуре системы. Справедливо и обратное: корректная оценка реологических параметров дисперсной системы возможна только на основе знания ее коллоидно-химических свойств. В связи с этим реологию дисперсных систем в общенаучном плане с большим основанием следует отнести к коллоидной химии, чем к механике.

РЕОЛОГИЯ – наука о деформациях и текучести сплошных сред, обнаруживающих упругие, пластические и вязкие свойства в различных сочетаниях. Упругие деформации возникают в теле при приложении нагрузки и исчезают, если нагрузки снять; пластические деформации появляются только в том случае, когда вызванные нагрузкой напряжения превышают известную величину – предел текучести; они сохраняются после снятия нагрузки; вязкое течение отличается тем, что оно возникает при любых сколь угодно малых напряжениях, с ростом напряжений увеличивается скорость течения, и при сохранении напряжений вязкое течение продолжается неограниченно. Еще одно свойство, которым могут обладать среды, изучаемые реологией, – это высокоэластичность, характерная, например, для резины, когда резиновая лента допускает десятикратное растяжение, а после снятия нагрузки практически мгновенно восстанавливает первоначальное состояние.

   С проблемами реологии приходится встречаться в технике: при разработке технологии разнообразных производственных процессов, при проектных работах и конструкторских расчётах, относящихся к самым различным материалам: металлам (особенно при высоких температурах), композиционным материалам, полимерным системам, нефтепродуктам, глинам и другим грунтам, горным породам, строительным материалам (бетонам, силикатам и др.), пищевым продуктам и т.д.

  В реологии существует несколько подразделов. Теоретическая реология (феноменологическая реология, или макрореология) может рассматриваться как часть механики сплошных сред, она занимает промежуточное положение между гидромеханикой и теориями упругости, пластичности и ползучести. Она устанавливает зависимости между действующими на тело механическими напряжениями, вызываемыми деформациями, и их изменениями во времени. При обычных в механике сплошных сред допущениях об однородности и сплошности материала теоретическая реология решает разные краевые задачи деформирования и течения твёрдых, жидких и иных тел. Основное внимание обращается на сложное реологическое поведение вещества, например, когда одновременно проявляются вязкие и упругие свойства или вязкие и пластические. Общее реологическое уравнение состояния вещества пока не установлено, имеются уравнения лишь для отдельных частных случаев. Для описания реологического поведения материалов пользуются механическими моделями, для которых составляют дифференциальные уравнения, куда входят различные комбинации упругих и вязких характеристик. Реологическими моделями пользуются при изучении механических свойств полимеров, внутреннего трения в твёрдых телах и др. свойств реальных тел.

  Экспериментальная реология (реометрия) определяет различные реологические свойства веществ с помощью специальных приборов и испытательных машин.

  Микрореология исследует деформации и течение в микрообъёмах, например в объёмах, соизмеримых с размерами частиц дисперсной фазы в дисперсных системах или с размерами атомов и молекул.

  Биореология исследует течение разнообразных биологических жидкостей (например, крови, синовиальной, плевральной и др.), деформации различных тканей (мышц, костей, кровеносных сосудов) у человека и животных.

Деформация (от лат. deformatio — искажение), изменение относительного положения частиц тела, связанное с их перемещением. Деформация представляет собой результат изменения междуатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин междуатомных сил, мерой которого является упругое напряжение.

  Наиболее простые виды деформации тела в целом: растяжение — сжатие, сдвиг, изгиб, кручение. В большинстве случаев наблюдаемая деформация представляет собой несколько деформаций одновременно. В конечном счёте, однако, любую деформацию можно свести к 2 наиболее простым: растяжению (или сжатию) и сдвигу. Деформация тела вполне определяется, если известен вектор перемещения каждой его точки. Деформация твёрдых тел в связи со структурными особенностями последних изучается физикой твёрдого тела, а движения и напряжения в деформируемых твёрдых телах — теорией упругости и пластичности. У жидкостей и газов, частицы которых легкоподвижны, исследование деформация заменяется изучением мгновенного распределения скоростей.

  Деформация твёрдого тела может явиться следствием фазовых превращений, связанных с изменением объёма, теплового расширения, намагничивания (магнитострикционный эффект), появления электрического заряда (пьезоэлектрический эффект) или же результатом действия внешних сил. Деформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки, и пластической, если после снятия нагрузки она не исчезает (во всяком случаи полностью). Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, т. е. не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела.

  Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной приложенной к телу нагрузке деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и последействие упругое. Релаксация — процесс самопроизвольного уменьшения внутреннего напряжения с течением времени при неизменной деформации. Процесс самопроизвольного роста деформации с течением времени при постоянном напряжении называется последействием. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.

  В теории упругости и пластичности тела рассматриваются как «сплошные». Сплошность, т. е. способность заполнять весь объём, занимаемый материалом тела без всяких пустот является одним из основных свойств, приписываемых реальным телам. Понятие сплошности относится также к элементарным объёмам, на которые можно мысленно разбить тело. Изменение расстояния между центрами каждых двух смежных бесконечно малых объёмов у тела, не испытывающего разрывов, должно быть малым по сравнению с исходной величиной этого расстояния.

    Измерение деформации производится либо в процессе испытания материалов с целью определения их механических свойств, либо при исследовании сооружения в натуре или на моделях для суждения о величинах напряжений. Упругие Деформация весьма малы, и измерение их требует высокой точности. Наиболее распространённый метод исследования деформации — с помощью тензометров. Кроме того, широко применяются тензодатчики сопротивления, поляризационно-оптический метод исследования напряжения, рентгеновский структурный анализ. Для суждения о местных пластических Деформациях применяют накатку на поверхности изделия сетки, покрытие поверхности легко растрескивающимся лаком и т.д.

Релаксация (от лат. relaxatio — ослабление, уменьшение), процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц. Релаксация (физич.) — многоступенчатый процесс, т. к. не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объёмах и во всей системе и др.) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется Релаксацией (физич.) Все процессы Релаксации (физич.) являются неравновесными процессами, при которых в системе происходит диссипация энергии, т. е. производится энтропия (в замкнутой системе энтропия возрастает). В различных системах Релаксация (физич.) имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы Релаксации (физич.) весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации.

Рис. 1. Пример кривой ползучести.

Ползучесть материалов, медленная непрерывная пластическая деформация твёрдого тела под воздействием постоянной нагрузки или механического напряжения. Ползучестью в той или иной мере подвержены все твёрдые тела — как кристаллические, так и аморфные. Явление Ползучести было замечено несколько сот лет назад, однако систематические исследования Ползучести металлов и сплавов, резин, стекол относятся к началу 20 в. и особенно к 40-м гг., когда в связи с развитием техники столкнулись, например, с Ползучестью дисков и лопаток паровых и газовых турбин, реактивных двигателей и ракет, в которых значительный нагрев сочетается с механическими нагрузками. Потребовались конструкционные материалы (жаропрочные сплавы), детали из которых выдерживали бы нагрузки длительное время при повышенных температурах. Долгое время считали, что Ползучесть может происходить только при повышенных температурах, однако Ползучесть имеет место и при очень низких температурах, так, например, в кадмии заметная Ползучесть наблюдается при температуре —269 °С, а у железа — при —169 °С.

Рис. 2. а — кривые ползучести εpметаллов при различных нагрузках; б — кривые релаксации напряжения Р при постоянной деформации.

  Ползучесть наблюдают при растяжении, сжатии, кручении и др. видах нагружения. В реальных условиях службы жаропрочного материала Ползучесть происходит в весьма сложных условиях нагружения. Ползучесть описывается т. н. кривой ползучести (рис. 1), которая представляет собой зависимость деформации от времени при постоянных температуре и приложенной нагрузке (или напряжении). Её условно делят на три участка, или стадии: АВ — участок неустановившейся (или затухающей) Ползучести (I стадия), BC — участок установившейся Ползучести — деформации, идущей с постоянной скоростью (II стадия), CD — участок ускоренной Ползучесть (Ill стадия), E0 — деформация в момент приложения нагрузки, точка D — момент разрушения. Как общее время до разрушения, так и протяжённость каждой из стадий зависят от температуры и приложенной нагрузки. При температурах, составляющих 0,4—0,8 температуры плавления металла (именно эти температуры представляют наибольший технический интерес), затухание Ползучести на первой её стадии является результатом деформационного упрочнения (наклёпа). Т. к. Ползучесть происходит при высокой температуре, то возможно также снятие наклёпа — т. н. возврат свойств материала. Когда скорости наклёпа и возврата становятся одинаковыми, наступает II стадия Ползучести Переход в III стадию связан с накоплением повреждения материала (поры, микротрещины), образование которых начинается уже на I и II стадиях.

  Описанные кривые Ползучести имеют одинаковый вид для широкого круга материалов — металлов и сплавов, ионных кристаллов, полупроводников, полимеров, льда и др. твёрдых тел. Структурный же механизм Ползучести, т. е. элементарные процессы, приводящие к Ползучести, зависит как от вида материала, так и от условий, в которых происходит Ползучесть. Физический механизм Ползучести такой же, как и пластичности. Всё многообразие элементарных процессов пластической деформации, приводящих к Ползучести, можно разделить на процессы, осуществляемые движением дислокаций, и процессы вязкого течения. Последние имеют место у аморфных тел при всех температурах их существования, а также у кристаллических тел, в частности у металлов и сплавов, при температурах, близких к температурам плавления. При постоянных деформациях вследствие Ползучести напряжения с течением времени падают, т. е. происходит релаксация напряжений (рис. 2).

  Высокое сопротивление Ползучести является одним из факторов, определяющих жаропрочность. Для сравнительной оценки технических материалов сопротивление Ползучесть характеризуют пределом ползучести — напряжением, при котором за заданное время достигается данная деформация. В авиационном моторостроении принимают время, равное 100—200 ч, при конструировании стационарных паровых турбин — 100 000 ч. Иногда сопротивление Ползучести характеризуют величиной скорости деформации по прошествии заданного времени.

Вискозиметрия, раздел физики, посвященный изучению методов измерения вязкости. Существующее разнообразие методов и конструкций приборов для измерения вязкости — вискозиметров — обусловлено как широким диапазоном значений вязкости (от 10-5 н·сек/м2 у газов до 1012 н·сек/м2 у ряда полимеров), так и необходимостью измерять вязкость в условиях низких или высоких температур и давлений (например, сжиженных газов, расплавленных металлов, водяного пара при высоких давлениях и т.д.).

  Наиболее распространены три метода измерения вязкости газов и жидкостей: капиллярный, падающего шара и соосных цилиндров (ротационный). В основе их лежат соответственно: Пуазёйля закон, Стокса закон и закон течения жидкости между соосными цилиндрами. Вязкость определяют также по затуханию периодических колебаний пластины, помещенной в исследуемую среду.

  Определение вязкости капиллярными Вискозиметрами основано на законе Пуазёйля (см. Пуазёйля закон) и состоит в измерении времени протекания известного количества (объёма) жидкости или газа через узкие трубки круглого сечения (капилляры) при заданном перепаде давления. Капиллярными Вискозиметр измеряют вязкость от 10-5н∙сек/м2 (газы) до 104 н∙сек/м2 (консистентные смазки). Относительная погрешность образцовых капиллярных Вискозиметр±0,1—0,3%, рабочих приборов ±0,5—2,5%. На рис. 3 показано устройство различных типов стеклянных Вискозиметров. В капиллярных Вискозиметрах указанных типов течение жидкости происходит под действием силы тяжести (в начальный момент уровень жидкости в одном колене Вискозиметра выше, чем в другом). Время опорожнения измерительного резервуара определяют как промежуток между моментами прохождения уровня жидкости мимо меток на верхних и нижних концах резервуара. В капиллярных автоматических Вискозиметрах (непрерывного действия) жидкость поступает в капилляр от насоса постоянной производительности. Перепад давления на капилляре, измеряемый манометром, пропорционален искомой вязкости.

Рис. 3. Стеклянные капиллярные вискозиметры (ГОСТ 10028—67): 1 — измерительные резервуары; 2 — капилляры; 3 — приемные сосуды; 4 — питающий резервуар (в вискозиметрах для непрозрачных жидкостей ВНЖ); 5 — термостатирующая рубашка; M1, M2(у ВНЖ также M3) — метки, служащие для измерения времени истечения жидкости из измерительных резервуаров или их заполнения (у ВНЖ).

  В ротационных Вискозиметрах исследуемая вязкая среда находится в зазоре между двумя соосными телами (цилиндры, конусы, сферы, их сочетание), причём одно из тел (ротор) вращается, а другое неподвижно. Вязкость определяется по крутящему моменту при заданной угловой скорости или по угловой скорости при заданном крутящем моменте. Ротационные Вискозиметры применяют для измерения вязкости смазочных масел (при температурах до —60 °С), нефтепродуктов, расплавленных силикатов и металлов (до 2000 °С), высоковязких лаков и клеев, глинистых растворов и т.д. Относительная погрешность наиболее распространённых ротационных Вискозиметр лежит в пределах 3—5%. На рис. 4 показано устройство ротационного Вискозиметра РВ-7 (пределы измерений —от 1 до 105н∙сек/м2, погрешность ±3%).

Рис.4. Ротационный вискозиметр РВ-7 (с заданным крутящимся моментом): 1 — внутренний вращающийся цилиндр; 2 — внешний неподвижный цилиндр; 3 — ось вращающейся системы; 4 — термостат; 5 — мешалка термостата; 6 — термопары; 7 — шкив; 8 — тормоз; 9 — нить; 10 — блок; 11 — груз, вращающийся шкив. Скорость вращения шкива определяют по скорости опускания груза.

  Действие Вискозиметра с движущимся в исследуемой среде шариком основано на законе Стокса (см. Стокса закон); вязкость определяется по скорости прохождения падающим шариком промежутков между метками на трубке Вискозиметр К приборам этого типа относится широко распространённый универсальный вискозиметр Гепплера со «скользящим» шариком (рис. 5). Пределы измерений Вискозиметр этого типа 6∙10-4—250 н∙сек/м2, погрешность ±1—3%.

Рис. 5. Вискозиметр Гепплера со «скользящим» шариком: 1 — шарик; 2 — трубка с жидкостью; 3, 4, 5 — кольцевые метки на трубке; 6 — термостатирующая жидкостная баня; 7 — термометр; 8 — штуцер для присоединения прибора к термостату; 9 — уровень.

  Действие ультразвуковых Вискозиметровов основано на измерении скорости затухания колебаний в пластинке из магнитострикционного материала, погруженной в исследуемую среду. Колебания возникают от коротких (длительность 10—30 мксек) импульсов тока в катушке, намотанной на пластинку. При колебаниях пластинки в этой же катушке наводится эдс (см. Магнитострикция), которая убывает со скоростью, зависящей от вязкости среды. При уменьшении эдс до некоторого порогового значения в катушку поступает новый возбуждающий импульс. Вязкость среды определяют по частоте следования импульсов. Ультразвуковыми Вискозиметр измеряют вязкость в диапазоне от 10-3 до 500 н∙сек/м2 с относительной погрешностью 5%.

  Помимо Вискозиметров, позволяющих выразить результаты измерений в единицах динамической или кинематической вязкости, существуют Вискозиметр для измерения вязкости жидкостей в условных единицах. Такой Вискозиметр представляет собой сосуд с калиброванной сточной трубкой; вязкость оценивается по времени истечения определённого объёма жидкости. Например, с помощью Вискозиметров типа ВЗ-1 и ВЗ-4, предназначенных для исследования лаков и красок, вязкость выражают в секундах, а с помощью Вискозиметр типа ВУ (Энглера) для нефтепродуктов — в градусах Энглера. Перевод условных единиц в единицы вязкости Международной системы единиц (н∙сек/м2 и м2/сек) возможен, но неточен.

Реологические свойства это... Реологические свойства - определение, особенности и описание

В данной статье внимание будет уделено реологии. Вы узнаете, что это такое, ознакомитесь с основными положениями данной составной части физики и многое другое.

Реология как раздел физики

Реология является частью физической науки, которая занимается изучением явления деформации. Занимаясь исследованием характеристик и свойств настоящих предметов, реология находится между теорией об упругости и гидродинамикой. Реологические свойства - это особенности веществ, которые могут быть обнаружены под определенным воздействием некоторых сил или скоростей. Само понятие реологии ввел в обращение американский химик Юджин Бингам.

Знакомство с ньютоновской жидкостью

Ньютоновская жидкость является вязкой средой, которая при своем течении подчиняется закону вязкого трения Ньютона. Эта жидкость занимает ключевое место в реологии, поскольку вязкость в ней не зависит от процесса деформации.

Вторым важным понятием является идеально упругое тело. В этом теле в любой момент времени сила деформации зависит от приложенного усилия. Реологические свойства растворов в ньютоновских жидкостях являются измеримыми параметрами, а информация, полученная в результате исследований таких веществ, позволяет совершать большое количество практически полезных выводов. Данные термины были введены для объектов, которые в одно время могут показывать как пластичные, так и упругие свойства.

Деформация в реологии

Различные приложения реологии используются на практике для изучения различных свойств металлов при оказании на них давления либо течения. Каждый кристалл в любом его состоянии может быть изменен пластически, то есть деформироваться. Деформация происходит благодаря направленному движению дислокации и вакансии. Из-за воздействия различных сил в теле кристалла образуется напряжение, которое исчезает благодаря появлению различных трещин и деформаций. Если сила воздействия становится больше допустимой, то происходит разрушение тела. Фактически реологические свойства материалов описываются именно в реологии, что очень важно для человека в повседневной жизни.

Реологические свойства - это особенности веществ, которые обуславливают создание возможности различной эксплуатации изучаемых объектов. Практически всем веществам свойственны сложные реологические характеристики. На их состояние влияет множество факторов, которые воздействуют снаружи тела, такие как сила давления, время, температура. На медицинские препараты и их свойства влияют стабильность, концентрация и состав.

Влияние реологических свойств заметно во всех сферах промышленности и технологических процессах, от разработки до определения качества исходного продукта. Основными примерами таких изменений являются:

Особенности протекания процесса

Стандартным процессом реологического типа можно назвать относительное течение веществ в вялотекущем состоянии. При этом необходимо наличие эластичности, упругости и пластичности самого вещества. В самых разнообразных почвах постоянно протекают реологические процессы, которые происходят в результате смешивания частиц грунта твердого типа вместе с грунтовыми агрегатами, которые разделяет связная жидкость, а именно вода.

Вышеуказанный процесс вызывает нарушение связей структурного характера и приводит к созданию вязких контактов, а также переориентации грунтовых частиц. Здесь процесс деформации рассматривается в роли ползучести и может быть объемного или сдвигового типа. Первый вид (объемный) возникает в результате уплотнения частичек, а его главным обуславливающим фактором является фильтрация и изменение характеристик ползучести грунтового скелета. По характеру данное явление можно разделить на два вида: незатухающий и затухающий.

Подразделы в реологии

Реологическая наука в своем арсенале имеет некоторое подмножество разделов. Первым считается макрореология, иначе именуемая теоретической. Ее часто рассматривают наряду с механикой. Реологические свойства - это способность какого-либо тела к деформированию, и именно под таким углом макрореология рассматривает подобные особенности веществ. Данная часть реологии занимается установлением показателя зависимости действующего напряжения на определенный объект и величиной деформирования, а также изменением этого показателя деформации в результате течения времени. Решение краевых задач по деформации и течению тел твердого типа, а также жидких и иных тел является главной целью теоретической реологии. У этой науки нет четкого уравнения для определения вещественного состояния, однако имеются вариации формул для самых разнообразных случаев.

Еще одной частью реологии считается моделирование механического характера. Для него создаются дифференциальные уравнения, включающие в себя комбинацию как вязких, так и упругих качеств. Используют такие модели для исследования качественных характеристик полимерных веществ, трения внутреннего типа твердых тел и т. д.

Реометрия – экспериментальный раздел науки, определяющий разнообразные свойства объектов с использованием специальных приборов и машин.

Микрореология занимается исследованием деформации объектов с течением времени в микрообъеме.

Биореологические исследования изучают характеристики жидкостей и их течение. Рассматриваются жидкости, имеющие биологическую природу. Например, нарушение реологических свойств крови и своевременное выявление данного казуса позволит избежать ненужных проблем в организме субъекта. Также здесь рассматриваются результаты деформации разнообразных тканей.

Реология и ее явления присутствуют в большинстве природных процессов и в огромной части технологической и промышленной деятельности. Самые часто изучаемые вещества в таких процессах, как правило, части земной коры, различные виды пород, магма, нефть и глина, бетон и асфальтобетон, краски масляного типа, различные растворы, сплавы полимеров. Реологические свойства продуктов, например теста и тому подобного сырья, которое используется для приготовления конфет и прочих кондитерских изделий, также попадают под влияние изучениях их качественных параметров в реологии.

Ракетное топливо и средства гигиены, зубная паста, кремы и даже мышечные ткани, которые состоят из белковых тел, – все это проверяется и изучается в этой науке. В такой неполный список реологических процессов относятся даже такие вещества, как бетон, изначально твердый и жидкий и даже нефть. Реологические свойства буровых растворов особенно важны для добычи нефти, ведь если не уменьшить параметры реологического типа промывочных жидкостей, используемых в насосах при добыче нефти, то и упадут их технические показатели.

Как обнаружить свидетельства реологии в повседневности

Простой опыт встречается в быту, он возникает, когда при загрязнении клеем, смолой или сахарным сиропом человек пытается разлепить пальцы. Это приводит к появлению ниточек, которые создаются из, казалось бы, текучей среды. Таким образом, получается паутина и различные нити.

Реология дает нам возможность понять, что при скоростных воздействиях на тело вещества могут проявить себя как твердые, а при медленном воздействии - как жидкие. К примеру, удар о поверхность воды на скорости 150 км/час ничем не отличается, от удара о бетонную стену, в этом случае вода проявляет себя как твердое тело и не успевает проявиться ее текучесть. Бетонный столб может со временем стать кривым (вещество течет), различные струны на музыкальных инструментах периодически теряют свое натяжение, их приходится подтягивать, вследствие замедленного течения их длина увеличивается.

Диапазон релеологических процессов может состоять от нескольких секунд до миллиардов лет. Горные породы, образующие целые горные системы, сминаются за несколько геологических периодов, что может составлять миллиарды лет. Характеристики и особенности различных реологических сред различны и зависят от условий оказываемой нагрузки на них. По характеру и свойствам близкими к бингамовским жидкостям можно назвать зубные пасты, шламы, буровые растворы.

Некоторые исследования (биореология)

Основываясь на исследованиях реологических характеристик крови и влияющих на нее факторов, можно сделать заключение, что состояние агрегатного характера, в котором находится кровь, является основой, из которой нужно делать заключения. Улучшая реологические свойства крови, можно добиться ее лучшей циркуляции и способности переносить составные элементы внутренней среды организма. В современности ученые-исследователи уделяют большое внимание микрореологическим характеристикам крови. Однако вискозиметрия не утратила своего значения и по сей день. Определение реологических свойств крови при помощи вискозиметрии можно разделить на два основных типа: капиллярный и ротационный. Первый тип протекать может внутри трубки, размеры которой известны заранее, а сам процесс протекания подвергается действию заданных размеров разницы в давлении на разных ее концах.

Заключение

Реологические свойства – это особенности различных веществ, которые могут проявляться в результате воздействия определенного характера, например скорости или давления. Сама реология является важной наукой и неотъемлемой частью физики, а также свое применение находит даже в биологии. Эта наука имеет множество подразделов, которые хоть и работают в одной области, однако могут иметь самые разнообразные выводы в исследованиях.

Реология - это... Что такое Реология?

Реология (от греч. ρέος, «течение, поток» и -логия) — раздел физики, изучающий деформации и текучесть вещества. Изучая деформационные свойства реальных тел реология занимает промежуточное положение между теорией упругости и гидродинамикой.

Исходные понятия реологии — ньютоновская жидкость, вязкость которой не зависит от режима деформирований, и идеально упругое тело, в котором в каждый момент времени величина деформации пропорциональна приложенному напряжению. Эти понятия были обобщены для тел проявляющих одновременно пластичные (вязкостные) и упругие свойства. Практические приложения реологии описывают поведение конкретных материалов при нагрузках и при течении.

Любой кристалл или агрегат кристаллов, при определённых условиях, может быть пластически деформирован. Пластическая деформация кристаллов реализуется посредством направленного движения в нём дислокаций и вакансий. Под действием на кристалл внешней силы в объёме кристалла появляются напряжения, которые снимаются дефектами. Если сила превышает некий порог, то происходит хрупкое разрушение объекта.

Литература

См. также

Ссылки

РЕОЛОГИЯ

РЕОЛОГИЯ – наука о деформациях и текучести сплошных сред, обнаруживающих упругие, пластические и вязкие свойства в различных сочетаниях. Упругие деформации возникают в теле при приложении нагрузки и исчезают, если нагрузки снять; пластические деформации появляются только в том случае, когда вызванные нагрузкой напряжения превышают известную величину – предел текучести; они сохраняются после снятия нагрузки; вязкое течение отличается тем, что оно возникает при любых сколь угодно малых напряжениях, с ростом напряжений увеличивается скорость течения, и при сохранении напряжений вязкое течение продолжается неограниченно. Еще одно свойство, которым могут обладать среды, изучаемые реологией, – это высокоэластичность, характерная, например, для резины, когда резиновая лента допускает десятикратное растяжение, а после снятия нагрузки практически мгновенно восстанавливает первоначальное состояние.

Типичный реологический процесс – это сравнительно медленное течение вещества, в котором обнаруживаются упругие, пластические или высокоэластические свойства. Само слово реология происходит от греческого rew – течение; афоризм «все течет» по-гречески звучит panta rei – (па'нта ре'и). Реологические явления проявляются во многих природных процессах и в большом числе технологических. Очень многочисленны вещества, участвующие в таких процессах: это породы, составляющие земную кору, магма, вулканическая лава, это нефть и глинистые растворы, играющие важнейшую роль в добыче нефти; влажная глина, цементная паста, бетон и асфальтобетон (смесь асфальта и песка, которой покрывают тротуар), это масляные краски – смесь масла и частиц пигмента; это растворы и расплавы полимеров в процессе изготовления нитей, пленок, труб путем экструзии; наконец, это – хлебное тесто и тестообразные массы, из которых изготовляют конфеты, сосиски, кремы, мази, зубные пасты, это твердое топливо для ракет; это, наконец, белковые тела, например, мышечные ткани. В этот не полный перечень «реологических» сред входят как тела, которые естественно считать твердыми (бетон), так и жидкие – нефть. Еще один опыт можно провести с высокомолекулярным раствором полиэтиленоксида в воде. Если, наклонив стакан А, начать переливать из него раствор в нижний стакан Б (рис. 1), а потом аккуратно вернуть стакан А на место, то окажется, что тонкая струйка раствора продолжает перетекать из верхнего стакана в нижний: интересно, что эта струйка сначала поднимается вверх по вертикальной стенке стакана А, а затем, переливается через край и стекает вниз, в стакан Б – это своеобразный сифон, но без сифонной трубки.

Совсем простой опыт невольно ставит тот, кто испачкал пальцы смолой, резиновым клеем или густым сахарным сиропом: попытка разлепить пальцы приводит к образованию упругих нитей, которые вытягиваются из текучей среды. Именно так образуется паутина и шелковая нить.

Реология позволяет понять, что при быстрых воздействиях все тела ведут себя как твердые, при медленных – текут. Но понятия «быстрый» и «медленный» для разных сред различны. Удар о воду на скорости 200 км/час мало чем отличается от удара об асфальт – вода ведет себя как твердое тело (ее текучесть не успевает проявиться). Железобетонный столб, косо прислоненный к стене, через месяц оказывается кривым – бетон течет; струны на гитаре, оставленные в натянутом состоянии, снижают тон – в результате медленного течения материала их длина чуть-чуть увеличилась, соответственно, уменьшилось натяжение – их приходится подтягивать. Горные породы за геологические периоды сминаются в складки – образуются горные системы. Без вычислений ясно, что диапазон времен в реологических явлениях простирается от долей секунды до миллионов лет.

Итак, механические свойства разных реологических сред, во-первых, весьма разнообразны, и, во-вторых, оказываются существенно различными в зависимости от условий нагружения.

Очень многие реологические среды являются дисперсными системами двух или трех фаз: это мелкие твердые частицы, распределенные в вязкой жидкости (суспензия или гель, если твердая фаза преобладает), или это мелкие капельки одной жидкости в другой – эмульсия, или пузырьки воздуха в жидкости (пена), и т.д. Но, тем не менее, реология рассматривает такую среду как однородную, но обнаруживающую такие же механические свойства, как и те, что установлены в опытах с реальным конкретным материалом. Этот подход, характерный для механики сплошных сред, позволяет избежать трудностей, связанных с изучением механизмов взаимодействия фаз, и сравнительно просто описать основные черты поведения реологических сред при воздействии на них заданных нагрузок. Такие теории называются феноменологическими.

Математическая модель механических свойств данной среды задается уравнением, связывающим напряжения, имеющиеся в окрестности некоторой точки среды, и деформации, возникающие вследствие этого, причем в это уравнение могут входить и скорости напряжений и деформаций, т.е. их производные по времени, и интегралы по времени от напряжений или деформаций.

Это уравнение называется реологическим уравнением состояния среды или ее определяющим соотношением, и играет роль, аналогичную роли уравнения состояния идеального газа, нужно только иметь в виду, что уравнение состояния газа гораздо точнее отражает свойства конкретного газа, чем реологическое уравнение – свойства некоторой вязко-упруго-текучей среды, что объясняется очевидной причиной – очень высокой сложностью тех сред, которые изучает реология.

Определяющее соотношение должно быть сформулировано как связь тензоров напряжений и деформаций на основе всех известных опытных данных, но сами опыты эту связь не устанавливают, а лишь показывают ее проявления в некоторых частных случаях.

Простой и наглядный способ построения реологического уравнения состояния состоит в том, что каждое основное свойство среды можно смоделировать подходящим элементом, то есть упругость – пружинкой, вязкость – поршнем в цилиндре с вязкой жидкостью, пластичность – элементом с сухим трением (рис. 2).

Соединив тем или иным образом эти элементы, получают модель образца для механических испытаний, свойства которого в общих чертах можно определить теоретически. Это позволяет, изучив опыты с конкретным материалом, подобрать такое соединение элементов, чтобы обеспечить качественное соответствие реальным опытам, подбирая жесткость пружинки, вязкость масла в поршне, величину коэффициента сухого трения, можно добиться достаточно точного совпадения экспериментальных кривых и их модельного представления (если, конечно, структура модели правильно организована и достаточно богата для описания данного материала). Если модель из элементов построена, то написание математического соотношения производится по определенным правилам, причем сравнительно простым.

Модель, составленную из пружинок и поршеньков, можно только растягивать, но растяжению в модели могут соответствовать и сжатие, и сдвиг, и объемная деформация в натурной среде.

Можно построить модель вязко-упругого тела, последовательно соединив упругий и вязкий элементы (рис. 3).

Если эту систему быстро нагрузить (дернуть), то вязкий элемент не успеет сдвинуться с места и будет вести себя, как замороженный, а деформацию возьмет на себя пружина – и модель ведет себя как упругое тело. Наоборот, при медленном нагружении, например, при постоянной силе, к некоторой небольшой постоянной деформации пружины прибавляется в принципе неограниченно возрастающая деформация вязкого элемента, т.е. модель ведет себя как упругая жидкость, которую называют жидкостью Максвелла (а также телом или моделью Максвелла). Эта жидкость не подчиняется закону вязкости Ньютона и поэтому называется неньютоновской жидкостью.

Закон Гука применительно к пружине имеет вид

Dg = R/C

где Dg – упругое удлинение пружины, P – сила, C – жесткость пружины.

Для вязкой жидкости справедлив закон Ньютона, который применительно к перемещению поршня в цилиндре дает

здесь Da – вязкое смещение поршня в цилиндре, M – коэффициент вязкого сопротивления.

Уравнение, описывающее зависимость удлинения модели (рис. 3) D от величины силы получают, сложив упругое удлинение пружины Dg и вязкое удлинение системы «цилиндр-поршень» Da; но поскольку скорость вязкого удлинения матрицы dDa/ dt известна, то удобнее найти скорость удлинения модели dD / dt по формуле

где, очевидно,

,

Таким образом, уравнение модели имеет вид:

Чтобы теперь перейти от модели к сплошной среде, удлинение Dl заменяют деформацией e, силу P – напряжением s, жесткость C – модулем упругости G, а коэффициент вязкого сопротивления M – вязкостью жидкости m, в результате получается определяющее реологическое уравнение среды Максвелла в виде:

(точка означает производную по времени). Если задано напряжение как функция времени, s = ¦(t), то скорость деформации легко находится по формуле

Если же деформация задана как функция времени, то реологическое уравнение Максвелла представляет собой дифференциальное уравнение относительно t, решение которого имеет вид

(здесь t0 – начальное напряжение при t = 0, а величина называется временем релаксации). Пусть в начальный момент к образцу прикладывается усилие, вызывающее напряжение s0 ; при этом в образце возникает деформация e0. Если эту деформацию поддерживать постоянной, (e = 0), то напряжение t, согласно (2), убывает со временем экспоненциально, т.е.

s = s0е\up12–t/T

и за время T уменьшается в e раз, (e » 2,71828 – основание натуральных логарифмов). Таким образом, время релаксации T характеризует скорость убывания напряжений в описанном процессе при e = const, который называется процессом релаксации.

Реологическое уравнение Максвелла пригодно для качественного описания процессов в стекловидных и полимерных материалах. Для хорошего количественного описания используются более сложные модели.

Выражение для s = f(t) содержит интеграл по времени от начала процесса до текущего момента; поэтому значение напряжения s в момент t зависит от значений e во все предшествующие моменты от 0 до t, поэтому такие модели называют «материалами с памятью».

Для описания реологических свойств суглинка, имеющего структуру геля, в котором частицы песка соединяются цепочками коллоидных частиц глины, а промежутки заполнены водой, Кельвин предложил схему, в которой упругий и вязкий элементы соединены параллельно, т.е. так, что их деформации одинаковы (рис. 4).

Соответствующее реологическое уравнение получается аналогично тому, как это сделано для среды Максвелла, но с учетом того, что в модели Кельвина одинаковы деформации элементов, а общее напряжение получается суммированием напряжений в вязком и упругом элементах:

s = Ge + me

Анализ показывает, что среда Кельвина является твердым телом, похожим на губку, пропитанную вязкой жидкостью.

Примером более сложной модели является среда Бингама, модель которой представлена на рис. 4. Если увеличивать силу P, то сначала деформируется только пружина; затем, при определенном значении силы P, преодолевается сила трения бруска о поверхность и начинается его движение, сопротивление которому оказывает не только трение, но и вязкое сопротивление поршня в цилиндре (рис. 5).

Считается, что реология началась именно с этой модели, не укладывающейся в рамки взаимодействия классических сред – упругого тела и вязкой жидкости. Среда Бингама была введена для описания поведения свежей масляной краски, когда было установлено, что она является пластическим твердым телом, а не вязкой жидкостью.

Реологические модели, получаемые путем комбинирования основных элементов (упругость, вязкость, трение) качественно описывают поведение под нагрузкой реальных сред, но наблюдаются при этом значительные количественные отклонения. Но известны эффекты, для описания которых в настоящее время еще не создана удовлетворительная теория. В первую очередь, это так называемый эффект Вайсенберга. Он проявляется, в частности, в следующем опыте (рис. 6): Пусть есть два одинаковых стакана – один с ньютоновской вязкой жидкостью, например, с растительным маслом, другой – с концентрированным раствором высокополимерного вещества (например, сладкого сгущенного молока); оба стакана приводятся во вращение вокруг своих осей. Сверху в стаканы опущены неподвижные круглые стержни. В стакане с маслом видна ожидаемая картина – жидкость принимает форму тела вращения с параболической поверхностью, вертикальная координата которой возрастает с удалением от центра. Но в другом стакане жидкость начнет медленно подниматься по центральному неподвижному стержню, в результате чего уровень поверхности у оси оказывается выше, чем у краев.

Не менее интересен и «эффект Томса». В 1940-х многие исследователи замечали, что течение жидкости по трубопроводу сильно облегчается (снижается гидравлическое сопротивление), если в низкомолекулярную жидкость добавить очень малое (доли процента) количество растворимого полимера. Оказалось, что можно достигнуть четырехкратного снижения гидравлического сопротивления воды в трубе, добавляя несколько миллионных долей (по весу) подходящего высокомолекулярного вещества. Этот эффект используется в некоторых нефтепроводах, пожарных шлангах; есть исследования по снижению кровяного давления у животных.

Изучение реальных сред со сложными свойствами не обязательно относят к реологии: теория неньютоновской жидкостей, теория вязкоупругости и вязкопластичности, теория ползучести металлов при высоких температурах, механика природных процессов – это самостоятельные научные направления, с которыми связаны многие важнейшие достижения как в области теории, так и в области практики – от медицины до космоса, от снежных лавин до дрейфа континентов.

Владимир Кузнецов

Реологические свойства - это... Что такое Реологические свойства?

        горных пород (от греч. rheos - течение, поток и logos - слово, учение * а. reologic properties of rocks; н. Flieβeigenschaften der Gesteine, rheologische Eigenschaften des Gebirges; ф. proprietes rheologiques des roches; и. caracteristicas reologicas de rocas, propiedades reologicas de rocas) - совокупность свойств, определяющих способность г. п. изменять во времени напряжённо-деформированное состояние в поле действия механических сил. K основным P. c. относятся: Упругость, Пластичность, Прочность, Вязкость, Ползучесть, Релаксация напряжений.         P. c. характеризуют изменение (рост) во времени деформаций в г. п. при постоянном напряжении (явление ползучести) либо изменение (падение) напряжений при постоянной деформации (явление релаксации). Ползучесть и релаксация напряжений связаны c переходом упругих деформаций в пластические, необратимые.         Cложное реологич. поведение г. п. можно изучать экспериментально и теоретически. Экспериментально P. c. определяются испытанием г. п. или при постоянной нагрузке (простая ползучесть), или при постоянной деформации. Hаибольшее распространение получили испытания при постоянной нагрузке, что связано co значительной простотой эксперимента по сравнению c испытаниями на релаксацию напряжений. Tеоретич. метод исследования заключается в установлении зависимости между действующими на г. п. напряжениями, вызываемыми деформациями, и их изменениями во времени.         Проявление P. c. в значительной мере зависит от типа породы, влажности, трещиноватости, темп-ры, но решающим является уровень напряжённого состояния. P. c. и их параметры широко используются при исследовании механич. процессов в массиве г. п., в расчётах при оценке прочности и устойчивости горн. выработок, бортов карьеров, скважин, целиков, горнотехн. сооружений и др. Литература: Гальперин A. M., Шафаренко E. M., Pеологические расчеты горнотехнических сооружений, M., 1977; Tурчанинов И. A., Иофис M. A., Kаспарьян Э. B., Oсновы механики горных пород, Л., 1977. Ю. И. Бурчаков.

Горная энциклопедия. — М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984—1991.

Реологические свойства

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 2

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 3

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 4

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 5

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 6

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 7

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 8

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 9

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 10

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 11

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 12

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 13

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 14

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 15

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 16

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 17

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 18

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 19

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 20

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 21

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 22

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 23

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 24

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 25

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт

Page 26

28818

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

 

 Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

 

 Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

 

 Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

 

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

 

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

 

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

 

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения Ричард ван Нурт


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.