Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Разрядные слагаемые что это такое


Разрядные слагаемые числа

Любое натуральное число можно записать в виде суммы разрядных слагаемых.

Как это делается, видно из следующего примера: число 999 состоит из 9 сотен, 9 десятков и 9 единиц, поэтому:

999 = 9 сотен + 9 десятков + 9 единиц = 900 + 90 + 9

Числа 900, 90 и 9 – разрядные слагаемые. Разрядное слагаемое – это просто количество единиц в данном разряде.

Сумму разрядных слагаемых также можно записать следующим образом:

999 = 9 · 100 + 9 · 10 + 9 · 1

Числа, на которые выполняется умножение (1, 10, 100, 1000 и т. д.), называются разрядными единицами. Так, 1 – это единица разряда единиц, 10 – единица разряда десятков, 100 – единица разряда сотен и т. д. Числа, которые умножаются на разрядные единицы выражают количество разрядных единиц.

Запись любого числа в виде:

12 = 1 · 10 + 2 · 1     или     12 = 10 + 2

называется разложением числа на разрядные слагаемые (или суммой разрядных слагаемых).

Сумма разрядных слагаемых – это запись многозначного числа в виде сложения количеств его разрядных единиц.

Примеры:

1) 3278 = 3 · 1000 + 2 · 100 + 7 · 10 + 8 · 1 = 3000 + 200 + 70 + 8

2) 5031 = 5 · 1000 + 0 · 100 + 3 · 10 + 1 · 1 = 5000 + 30 + 1

3) 3700 = 3 · 1000 + 7 · 100 + 0 · 10 + 0 · 1 = 3000 + 700

Обратите внимание, что разрядные единицы могут быть записаны в виде степени числа 10:

1) 3278 = 3 · 103 + 2 · 102 + 7 · 101 + 8 · 1

2) 5031 = 5 · 103 + 0 · 102 + 3 · 101 + 1 · 1 = 5 · 103 + 3 · 101 + 1

3) 3700 = 3 · 103 + 7 · 102 + 0 · 101 + 0 · 1 = 3 · 103 + 7 · 102

Калькулятор разложения числа на разрядные слагаемые

Представить число в виде суммы разрядных слагаемых, вам поможет данный калькулятор. Просто введите нужное число и нажмите кнопку Разложить.

Определение, что такое разрядные слагаемые с примерами разряда и класса в математике

Главная > Наука > Математика > Разрядные слагаемые в математике

Число — это математическое понятие для количественного описания чего-либо или его части, служит также для сравнения целого и частей, расположения по порядку. Понятие числа изображается знаками или цифрами в различном сочетании. В настоящее время почти везде используются цифры от 1 до 9 и 0. Цифры в виде семи латинских букв применения почти не имеют и рассматриваться здесь не будут. [block id=»32″]

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Оглавление:

[block id=»33″]

Натуральные числа

При счёте: «один, два, три… сорок четыре» или расстановке по очереди: «первый, второй, третий… сорок четвёртый» используются естественные числа, которые называются натуральными. Вся эта совокупность называется «ряд натуральных чисел» и обозначается латинской буквой N и не имеет конца, ведь всегда есть число ещё больше, и са́мого большого просто не существует.

Разряды и классы чисел

Разряды

единиц

десятков

сотен

Отсюда видно, что разрядом числа является его позиция в цифровой записи, причём любое значение можно представлять через разрядные слагаемые в виде nnn = n00 + n0 + n, где n — любая цифра от 0 до 9.

Один десяток является единицей второго разряда, а одна сотня — третьего. Единицы первого разряда называются простыми, все остальные являются составными.

Для удобства записи и передачи применяется группировка разрядов в классы по три в каждом. Между классами для удобства чтения допускается ставить пробел.

Классы

Первый — единиц, содержит до 3 знаков:

Двести тринадцать содержит в себе следующие разрядные слагаемые: две сотни, один десяток и три простых единиц.

Сорок пять состоит из четырёх десятков и пяти простых единиц. [block id=»3″]

Второй — тысяч, от 4 до 6 знаков:

Эта сумма состоит из следующих разрядных слагаемых:

  1. шестьсот тысяч;
  2. семьдесят тысяч;
  3. девять тысяч;
  4. восемьсот;
  5. десять;
  6. два;

Здесь отсутствуют слагаемые выше четвёртого разряда.

Третий — миллионов, от 7 до 9 цифр:

Это число содержит девять разрядных слагаемых:

  1. 800 миллионов;
  2. 80 миллионов;
  3. 7 миллионов;
  4. 200 тысяч;
  5. 10 тысяч;
  6. 3 тысячи;
  7. 6 сотен;
  8. 4 десятка;
  9. 4 единицы;

В этом числе нет слагаемых выше 7 разряда. [block id=»4″]

Четвёртый — миллиардов, от 10 до 12 цифр:

Пятьсот шестьдесят семь миллиардов восемьсот девяносто два миллиона двести тридцать четыре тысячи девятьсот семьдесят шесть.

Разрядные слагаемые 4 класса читаются слева направо:

  1. единицы сотен миллиардов;
  2. единицы десятков миллиардов;
  3. единицы миллиардов;
  4. сотен миллионов;
  5. десятков миллионов;
  6. миллионов;
  7. сотен тысяч;
  8. десятков тысяч;
  9. тысяч;
  10. простые сотни;
  11. простые десятки;
  12. простые единицы.

Нумерация разряда числа производится начиная с меньшего, а чтение — с большего. [block id=»5″]

При отсутствии в числе слагаемых промежуточных значений при записи ставятся нули, при произношении названия отсутствующих разрядов, как и класса единиц не произносится:

Четыреста миллиардов четыре. Здесь не произносятся из-за отсутствия следующие названия разрядов: десятого и одиннадцатого четвёртого класса; девятого, восьмого и седьмого третьего и самого́ третьего класса; также не озвучиваются названия второго класса и его разрядов, а также сотни и десятки единиц.

Пятый — триллионов, от 13 до 15 знаков.

Читается слева:

Четыреста восемьдесят семь триллионов семьсот восемьдесят девять миллиардов шестьсот пятьдесят четыре миллиона четыреста двадцать семь двести сорок один.

Шестой — квадриллионов, 16—18 цифр.

Триста двадцать один квадриллион пятьсот сорок шесть триллионов восемьсот восемнадцать миллиардов четыреста девяносто два миллиона триста девяносто пять тысяч девятьсот пятьдесят три.

Седьмой — квинтиллионов, 19—21 знак.

Семьсот семьдесят один квинтиллион шестьсот сорок два квадриллиона девятьсот шестьдесят два триллиона девятьсот двадцать один миллиард триста девяносто восемь миллионов шестьсот тридцать четыре тысячи триста восемьдесят девять.

Восьмой — секстиллионов, 22—24 цифры.

Восемьсот сорок два секстиллиона пятьсот двадцать семь квинтиллионов триста сорок два квадриллиона четыреста пятьдесят восемь триллионов семьсот пятьдесят два миллиарда четыреста шестьдесят восемь миллионов триста пятьдесят девять тысяч сто семьдесят три.

Можно просто различать классы по нумерации, к примеру, число 11 класса содержит в себе при написании от 31 до 33 знаков.

Но на практике запись такого количества знаков неудобна и чаще всего приводит к ошибкам. Поэтому при операциях с такими величинами производится сокращение количества нулей путём возведения в степень. Ведь значительно проще написать 10 31, чем приписывать тридцать один ноль к единице. [block id=»6″] [block id=»2″]

[block id=»10″]

Отзывы и комментарии

Сумма разрядных слагаемых натурального числа

Представленная статья посвящена интересной теме о натуральных числах. Для того, чтобы выполнять некоторые действия, необходимо представлять исходные выражения как сложение нескольких чисел – другим языком, раскладывать числа по разрядам. Обратный процесс также очень важен для решения упражнений и задач.

В данном разделе детально рассмотрим типичные примеры для лучшего усвоения информации. Мы также научимся преобразовывать натуральные числа и записывать их в другом виде.

Yandex.RTB R-A-339285-1

Исходя из названия статьи, можно сделать вывод, что этот параграф посвящен таким математическим терминам, как «сумма» и «слагаемые». Перед тем, как приступить к изучению данной информации, следует подробно изучить тему, чтобы иметь понятие о натуральных числах.

Приступим к работе и рассмотрим основные понятия о разрядных слагаемых.

Определение 1

Разрядные слагаемые – это определенные числа, которые состоят из нулей и единственной цифры, отличной от нуля. Натуральные числа 5, 10, 400, 200 относятся к данной категории, а числа 144, 321, 5 540, 16 441 – не относятся.

Количество разрядных слагаемых у представленного числа равняется тому числу, сколько цифр, отличных от нуля, содержится в записи. Если представить число 61 как сумму разрядных слагаемых, так как 6 и 1 отличаются от 0. Если разложить число 55050 как сумму разрядных слагаемых, то оно представлено как сумма 3 слагаемых. Три пятерки, представленные в записи, отличны от нуля.

Определение 2

Следует помнить, что все разрядные слагаемые числа содержат разное количество знаков в своей записи.

Определение 3

Сумма разрядных слагаемых натурального числа равна этому числу.

Перейдем к понятию разрядных слагаемых.

Определение 4

Разрядные слагаемые– это такие натуральные числа, в записи которых содержится цифра, отличная от нуля. Количество чисел должно быть равно количеству цифр, не равных нулю. Все слагаемые числа могут записываться с различным количеством знаков. Если мы раскладываем число по разрядам, то сумма слагаемых числа всегда будет равна этому числу.

Проанализировав понятие, можно сделать вывод, что однозначные и многозначные числа (полностью состоящие из нулей за исключением первой цифры) нельзя представить в качестве суммы. Это происходит потому, что данные числа сами будут разрядными слагаемыми для каких-то чисел. За исключением данных чисел, все остальные примеры могут раскладываться на слагаемые.

Как раскладывать числа?

Чтобы разложить число как сумму разрядных слагаемых, необходимо вспомнить, что натуральные числа связаны с количеством некоторых предметов. В записи числа разряды зависят от количества единиц, десятков, сотен, тысяч и так далее. Если вы возьмем, например, число 58, то может отметить, что он отвечает 5 десяткам и 8 единицам. Число 134 400 соответствует 1 сотне тысяч, 3 десяткам тысяч, 4тысячам и 4 сотням. Можно представить эти числа в виде равенств – 50+8=58 и 134 400=100 000+30 000+4 000+400. В данных примерах мы наглядно увидели, как можно разложить число в виде разрядных слагаемых.

Смотря на этот пример, мы сможем любое натуральное число представить в виде суммы разрядных слагаемых.

Приведем еще один пример. Представим натуральное число 25 в виде суммы разрядных слагаемых. Число 25 соответствует 2 десяткам и 5 единицам, поэтому 25=20+5. А вот сумма 17+8 не является суммой разрядных слагаемых числа 25, так как в ней не может быть двух чисел, состоящих из одинакового количества знаков.

Мы разобрали основные понятия. Разрядные слагаемые получили свое название из-за того, что каждое принадлежит к определенному разряду.

Как найти натуральное число, если известна сумма разрядных слагаемых?

Для того, чтобы разобрать данный пример, проанализируем обратную задачу. Представим, что нам известна сумма разрядных слагаемых. Нам необходимо найти данное натуральное число.

Например, сумма 200+30+8 разложено по разрядам числа 238, а сумма 3 000 000+20 000+2 000+500 соответствует натуральному числу 3 022 500. Таким образом, мы легко можем определить натуральное число, если нам известна его сумма резервных слагаемых.

Еще один способ нахождения натурального числа – это сложение в столбцах разрядных слагаемых. Данный пример не должен вызвать у вас сложности во время выполнения. Поговорим об этом подробнее.

Пример 1

Необходимо определить исходное число, если известна сумма разрядных слагаемых 200 000+40 000+50+5. Перейдем к решению. Необходимо записать числа 200 000, 40 000, 50 и 5 для сложения в столбик:

Осталось сложить числа по столбцам. Для этого нужно помнить, что сумма нулей равна нулю, а сумма нулей и натурального числа равна этому натуральному числу.

Получаем:

Выполнив сложение, мы получим натуральное число 240 055, сумма разрядных слагаемых которого имеет вид 200 000+40 000+50+5.

Поговорим еще об одном моменте. Если мы научимся раскладывать числа и представлять их в виде суммы разрядных слагаемых, то мы также сможем представлять натуральные число в виде суммы слагаемых, не являющихся разрядными.

Пример 2

Разложение по разрядам числа 725 будет представлено как 725=700+20+5, а сумму разрядных слагаемых 700+20+5 можно представить как (700+20)+5=720+5 или 700+(20+5)=700+25, или (700+5)+20=705+20.

Иногда сложные вычисления можно немного упростить. Рассмотрим еще небольшой пример для закрепления информации.

Пример 3

Выполним вычитание чисел 5 677 и 670. Для начала представим число 5677 в виде суммы разрядных слагаемых: 5 677=5 000+600+70+7. Выполнив действие, мы можем сделать вывод, что. сумме (5 000+7)+(600+70)=5 007+670. Тогда 5 677−670=(5 007+670)−670=5 007+(670−670)=5 007+0=5 007.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

2 класс. Математика. Разрядные слагаемые - Разрядные слагаемые

В этом занятии познакомимся с понятием «разрядные слагаемые» и научимся раскладывать числа на разрядные слагаемые.

Давайте решим задачу:

Красная Шапочка отправилась в гости к своей бабушке.

И взяла она с собой гостинец для бабушки – корзинку с пирожками.

У Красной Шапочки в корзинке было 10 пирожков с капустой и 7 пирожков с грибами. Сколько всего пирожков у Красной Шапочки в корзинке?

Чтобы ответить на вопрос задачи, необходимо выполнить сложение, а именно к 10 пирожкам с капустой прибавить 7 пирожков с грибами.

10 + 7 = 17 (пирожков).

Значит, 17 пирожков всего было в корзинке у Красной Шапочки.

Обратим внимание на получившееся при решении задачи числовое выражение:

10 + 7 = 17.

Назовем все компоненты сложения.

Первое число 10 – первое слагаемое, число 7 – второе слагаемое и число 17 – сумма.

А что мы еще можем сказать про числа 10, 7 и 17?

Число 10 – это двузначное число, записанное двумя цифрами 1 и 0.

Число 10 относится к разряду десятков и равняется 1 десятку.

Число 7 – это однозначное число, записанное одной цифрой 7.

Это число относится к разряду единиц.

Заменим слагаемые 10 и 7 в нашем числовом выражении разрядными числами.

Так, первое слагаемое 10 = 1 десятку, а второе слагаемое 7 = 7 единицам.

Получили следующее числовое выражение:

1 десяток + 7 единиц = 17.

Значит, число 17 – это двузначное число, записанное двумя цифрами 1 и 7.

Оно состоит из 1 десятка и 7 единиц.

Обратим внимание на получившееся выражение: 1 десяток + 7 единиц = 17.

Назовем компоненты сложения.

Первое слагаемое – 1 десяток, второе слагаемое – 7 единиц, сумма – число 17.

И первое, и второе слагаемые представлены разрядными числами.

Значит, эти слагаемые можно назвать разрядными слагаемыми.

§2. Разложение чисел на разрядные слагаемые

Запишем числовые выражения 10 + 7 = 17 и 1 десяток + 7единиц =17 как одно числовое выражение:

1 десяток + 7 единиц = 10 + 7 = 17.

Слагаемые 10 и 7 тоже будут разрядными слагаемыми, так 10 = 1 десятку, а 7 = 7 единицам.

Любое натуральное многозначное число можно представить в виде суммы разрядных слагаемых.

Например, число 53 состоит из 5 десятков и 3 единиц.

53 = 5 десятков + 3 единицы = 50 + 3

Представление числа в виде:  53 = 50 + 3 называется разложением числа на разрядные слагаемые или суммой разрядных слагаемых.

А числа 50 и 3 называются разрядными слагаемыми.

Числа 1, 10, 100, 1000 и т.д. – называются разрядными единицами.

Так, 1 – это единица разряда единиц;

10 – единица разряда десятков;

100 – единица разряда сотен и т.д.

Например, про число 50 можно сказать, что это 5 единиц разряда десятков, а про число 3 мы скажем – это 3 единицы разряда единиц.

Чтобы разложить число на разрядные слагаемые, необходимо:

1.    определить количество всех единиц какого-либо разряда, т.е. сколько в числе единиц, десятков, сотен и т.д.;

2.    записать число в виде суммы разрядных слагаемых.

Представим еще одно число, число 72, в виде разрядных слагаемых:

Подчеркнем одной чертой единицы в этом числе, а двумя чертами – десятки: 72.

Запишем число 72 в виде суммы разрядных слагаемых.

§3. Краткие итоги урока

Подведем итоги урока:

Любое натуральное многозначное число можно представить в виде суммы разрядных слагаемых.

Представление числа в виде: 53 = 50 + 3  называется разложением числа на разрядные слагаемые или суммой разрядных слагаемых. А числа 50 и 3 называются разрядными слагаемыми.

Чтобы разложить число на разрядные слагаемые, необходимо:

1)    определить количество всех единиц какого-либо разряда, т.е. сколько в числе единиц, десятков, сотен и т.д.;

2)    записать число в виде суммы разрядных слагаемых.

Числа 1, 10, 100, 1000 и т.д. – называются разрядными единицами. Так, 1 – это единица разряда единиц; 10 – единица разряда десятков; 100 – единица разряда сотен и т.д.

ИСТОЧНИКИ

https://vimeo.com/124205288

http://znaika.ru/catalog/2-klass/matematika/Razryadnye-slagaemye

Нет дополнительных материалов для этого занятия.

Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых.

Существуют в математике огромное количество натуральных чисел. Они все разные. Например, 2, 67, 354, 1009. Рассмотрим подробно эти числа. Натуральное число 2 состоит из одной цифры, поэтому такое число называют, однозначным числом. Еще пример однозначных чисел: 3, 5, 8. Натуральное число 67 состоит из двух цифр, поэтому такое число называют, двузначным числом. Пример двузначных чисел: 12, 35, 99. Трехзначные числа состоят из трех цифр, например: 354, 444, 780. Четырехзначные числа состоят из четырёх цифр, например: 1009, 2600, 5732.

Двузначные, трехзначные, четырехзначные, пятизначные, шестизначные и т.д. числа, называются, многозначными числами.

Разряды чисел.

Рассмотрим число 134. У каждой цифры этого числа есть свое место. Такие места, называются, разрядами.

Цифра 4 занимает место или разряд единиц. Так же цифру 4 можно назвать цифрой первого разряда. Цифра 3 занимает место или разряд десятков. Или цифру 3 можно назвать цифрой второго разряда. И цифра 1 занимает разряд сотен. По-другому, цифру 1 можно назвать цифрой третьего разряда. Цифра 1 является последней цифрой слава числа 134, поэтому цифру 1 можно назвать, цифрой высшего разряда. Цифра высшего разряда всегда больше 0.

Каждые 10 единиц любого разряда образуют новую единицу более высокого разряда.  10 единиц образуют один разряд десяток, 10 десятков образуют один разряд сотен, десять сотен образуют разряд тысяч и т.д. Если нет какого-то разряда, то вместо него будет стоять 0.

Например: число 208. Цифра 8 – первый разряд единиц. Цифра 0 – второй разряд десятков. 0 означает в математике ничего. Из записи следует, что десятков у данного числа нет.

Цифра 2 –  третий разряд сотен.

Сумма разрядных слагаемых натурального числа.

Числа, действия с числами

Для выполнения некоторых действий над натуральными числами приходится представлять эти натуральные числа в виде суммы разрядных слагаемых или, как еще говорят, раскладывать натуральные числа по разрядам. Не менее важным является обратный процесс - запись натурального числа по сумме разрядных слагаемых.

В этой статье мы очень подробно на примерах разберемся с представлением натуральных чисел в виде суммы разрядных слагаемых, а также научимся записывать натуральное число по его известному разложению по разрядам.

Представление натурального числа в виде суммы разрядных слагаемых.

Как видите, в названии статьи фигурируют слова «сумма» и «слагаемые», поэтому для начала мы рекомендуем хорошо разобраться в информации статьи общее представление о сложении натуральных чисел. Также не помешает повторить материал из раздела разряд, значение разряда натурального числа.

Давайте примем на веру следующие утверждения, которые помогут нам дать определение разрядных слагаемых.

Разрядными слагаемыми могут быть только натуральные числа, записи которых содержат единственную цифру, отличную от цифры 0. Например, натуральные числа 5, 10, 400, 20 000 и т.п. могут быть разрядными слагаемыми, а числа 14, 201, 5 500, 15 321 и т.п. – не могут.

Количество разрядных слагаемых данного натурального числа должно быть равно количеству цифр в записи данного числа, отличных от цифры 0. Например, натуральное число 59 можно представить в виде суммы двух разрядных слагаемых, так как в записи этого числа участвуют две цифры (5 и 9), отличные от 0. А сумма разрядных слагаемых натурального числа 44 003 будет состоять из трех слагаемых, так как запись числа содержит три цифры 4, 4 и 3, которые отличаются от цифры 0.

Все разрядные слагаемые данного натурального числа в своей записи содержат разное количество знаков.

Сумма разрядных слагаемых данного натурального числа должна быть равна данному числу.

Теперь мы можем дать определение разрядных слагаемых.

Разрядные слагаемые данного натурального числа – это такие натуральные числа,

Из приведенного определения следует, что однозначные натуральные числа, а также многозначные натуральные числа, записи которых полностью состоят из цифр 0, за исключением первой цифры слева, не раскладываются в сумму разрядных слагаемых, так как сами являются разрядными слагаемыми некоторых натуральных чисел. Остальные натуральные числа могут быть представлены в виде суммы разрядных слагаемых.

Осталось разобраться с представлением натуральных чисел в виде суммы разрядных слагаемых.

Для этого нужно вспомнить, что натуральные числа по своей сути связаны с количеством некоторых предметов, при этом в записи числа значения разрядов задают соответствующие количества единиц, десятков, сотен, тысяч, десятков тысяч и так далее. Например, натуральное число 48 отвечает 4 десяткам и 8 единицам, а число 105 070 соответствует 1 сотне тысяч, 5 тысячам и 7 десяткам. Тогда в силу смысла сложения натуральных чисел справедливы следующие равенства 48=40+8 и 105 070=100 000+5 000+70. Так мы представили натуральные числа 48 и 105 070 в виде суммы разрядных слагаемых.

Рассуждая аналогичным образом, мы можем любое натуральное число разложить по разрядам.

Приведем еще один пример. Представим натуральное число 17 в виде суммы разрядных слагаемых. Число 17 соответствует 1 десятку и 7 единицам, поэтому 17=10+7. Это и есть разложение числа 17 по разрядам.

А вот сумма 9+8 не является суммой разрядных слагаемых натурального числа 17, так как в сумме разрядных слагаемых не может быть двух чисел, записи которых состоят из одинакового количества знаков.

Теперь стало понятно, почему разрядные слагаемые называются именно разрядными. Это связано с тем, что каждое разрядное слагаемое является «представителем» своего разряда данного натурального числа.

К началу страницы

Рассмотрим обратную задачу. Будем считать, что нам дана сумма разрядных слагаемых некоторого натурального числа, и нужно найти это число. Для этого можно представить, что каждое из разрядных слагаемых написано на прозрачной пленке, но области с цифрами, отличными от цифры 0, не прозрачны. Чтобы получить искомое натуральное число нужно как бы «наложить» друг на друга все разрядные слагаемые, совмещая их правые края.

К примеру, сумма 300+20+9 представляет собой разложение по разрядам числа 329, а сумма разрядных слагаемых вида 2 000 000+30 000+3 000+400 соответствует натуральному числу 2 033 400. То есть, 300+20+9=329, а 2 000 000+30 000+3 000+400=2 033 400.

Чтобы найти натуральное число по известной сумме разрядных слагаемых, можно сложить столбиком эти разрядные слагаемые (при необходимости обращайтесь к материалу статьи сложение натуральных чисел столбиком). Разберем решение примера.

Найдем натуральное число, если дана сумма разрядных слагаемых вида 200 000+40 000+50+5. Записываем числа 200 000, 40 000, 50 и 5 так, как того требует способ сложения столбиком:

Осталось сложить числа по столбцам. Для этого нужно помнить, что сумма нулей равна нулю, а сумма нулей и натурального числа равна этому натуральному числу. Получаем

Под горизонтальной линией мы получили искомое натуральное число 240 055, сумма разрядных слагаемых которого имеет вид 200 000+40 000+50+5.

В заключении хочется обратить Ваше внимание еще на один момент. Навыки разложения натуральных чисел по разрядам и умение выполнения обратного действия позволяют представлять натуральные число в виде суммы слагаемых, не являющихся разрядными. Например, разложение по разрядам натурального числа 725 имеет следующий вид 725=700+20+5, а сумму разрядных слагаемых 700+20+5 в силу свойств сложения натуральных чисел можно представить как (700+20)+5=720+5 или 700+(20+5)=700+25, или (700+5)+20=705+20.

Возникает логичный вопрос: «Для чего это нужно»? Ответ прост: в некоторых случаях это может упростить вычисления. Приведем пример. Выполним вычитание натуральных чисел 5 677 и 670. Сначала представим уменьшаемое в виде суммы разрядных слагаемых: 5 677=5 000+600+70+7. Несложно заметить, что полученная сумма разрядных слагаемых равна сумме (5 000+7)+(600+70)=5 007+670. Тогда 5 677−670=(5 007+670)−670=5 007+(670−670)=5 007+0=5 007.

Некогда разбираться?

Закажите решение

К началу страницы


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.