Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Провал напряжения что это такое


Провалы напряжения в сети: причины возникновения и защита от них

Обеспечение качества электроэнергии, отвечающего нормам ГОСТ 13109-97, является основной задачей при электроснабжении потребителей. Отклонения от номинальных значений, в частности, провалы напряжения, отрицательно отражаются на работе электрооборудования и могут стать причиной серьезного материального ущерба. В данной статье мы ответим на ключевые вопросы, связанные с кратковременным понижением напряжения, рассмотрим природу этого явления и причины его проявления.

Что такое провал напряжения?

В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.

Осцилограмма провала напряжения

Характеризующие показатели

Для описания понижения амплитуды напряжения используются следующие показатели:

δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном — Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;

∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк — tн

Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.

Основные показатели провала напряжения

Приведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.

Причины появления провалов

Несмотря на то, что проявления отклонения напряжения имеют случайный характер, вероятность этого события зависит от вполне определенных причин. К таковым относятся:

  1. Пусковые токи.
  2. Колебания напряжения при коротком замыкании.
  3. Внезапное значительное увеличение нагрузки.
  4. Другие причины сетевого происхождения.

Рассмотрим подробно каждый из перечисленных факторов.

Токи включения

Образование токов включения, например, при старте мощных электродвигателей или другого устройства — самая распространенная причина подобных провалов. На рисунке ниже представлен пример, когда мощный двигатель подключен к единому вводу питания с другими потребителями.

Образование провала напряжения при запуске электродвигателя

Обозначения:

С включением двигателя М образуется пусковой ток Iпуск, величина которого превышает номинальный по значению (Iпуск > Iном). Это приводит к образованию зоны провала c существенным понижением напряжения в цепи RZ1 и незначительным отклонениям на главном распределителе остальных цепей потребителей.

Короткие замыкания

Возникновение в электросети токов коротких замыканий также вызывают отклонения напряжения от нормы. Рассмотрим, как протекает и определяется процесс в сетях с различным классом напряжения.

КЗ в сетях с низким напряжением.

Пример такой ситуации проиллюстрирован на рисунке ниже. В данном случае на величину тока КЗ влияют полные сопротивления RZ и RZ2.

Образование провала вследствие КЗ в цепи потребителя 2

Исходя из этого, можно сказать, что чем больше будет величина полного сопротивления в сети низкого напряжения, тем меньшим будет значение тока КЗ.

На практике, в случае КЗ в цепи потребителя 2 должно произойти срабатывание защиты этой группы. Например, если отключение цепи произойдет через 50 мс, то на главном распределителе образуется зона провала длительностью 50 мс. То есть, данный параметр зависит от скорости срабатывания защиты. При этом глубина провала будет уменьшаться по мере удаления от поврежденного участка, соответственно, чем ближе нагрузка, тем большее отклонение. Эти правила работают как в сетях с низким, среднем и высоким напряжением.

КЗ в сетях с напряжением среднего класса.

Больше всего проблем возникает, когда КЗ происходит в трехфазных сетях среднего класса напряжения. Несмотря на случайный характер этого явления, вероятность возникновения аварийной ситуации довольно велика, поскольку нельзя исключать влияние сторонних факторов. К таковым можно отнести:

При образовании тока КЗ он будет протекать, пока устройства автоматического защитного отключения на распределительной подстанции не изолирует аварийный участок. Пока этого не произойдет, в сети распределительной подстанции будет наблюдаться значительное снижение линейных напряжений.

КЗ в высоковольтных линиях.

В большинстве случаев замыкания в ВЛ происходят вследствие воздействия природных факторов (грозовые разряды, ураган и т.д.) или по причине ошибочных коммутаций и ложных срабатываний автоматической защиты.

Большие нагрузки

При подключении к электросети большой нагрузки, может привести к образованию пусковых токов, превышающих номинальные в несколько раз. В тех случаях, когда электроцепь рассчитана под номинальный ток, превышение этого параметра станет причиной снижения амплитуды источника питания. Масштабность данного проявления напрямую зависит от запаса мощности электрической сети и величины полного сопротивления.

Провалы сетевого происхождения

Учитывая сложность распределительных цепей, следует принять во внимание, что при повреждении одного из участков цепи будет оказываться влияние на остальные части. При этом на глубину и продолжительность провалов будет оказывать влияние следующие факторы:

Для более детального представления, рассмотрим пример, представленный на рисунке ниже.

Провалы сетевого происхождения

Допустим, произошло фазное замыкание в точке Р2, это приведет к тому, что у потребителя 1 отклонения напряжения наблюдаться не будут, у потребителя 2 глубина провала составит 63%, а у потребителя 3 – 97%.

Если однофазное замыкание возникнет в точке Р1, то глубина провала будет 50% от номинала у всех потребителей, за исключением потребителя 1. То есть, как мы видим, чем выше уровень топологии, где произошло повреждение, тем большее число потребителей попадает в зону провала напряжения. Соответственно, у потребителей, подключенных к уровню 3 риск появления провала значительно выше, чем у потребителей, запитанных от первого и второго уровня.

Допустимые провалы напряжения по ГОСТ

Согласно ГОСТ 32144 2013 для определения показателей качества электроэнергии провалы следует классифицировать по двум критериям:

  1. Величина остаточного напряжения.
  2. Длительность.

Поскольку появление провалов носит случайный характер, для представленных выше критериев не установлены численные значения. Тем не менее, измерения амплитуды и длительности должны проводиться с целью создания статистического массива, позволяющего установить вероятность случайного события для определенной электросети, с целью характеризовать КЭ.

Что касается «допустимых по ГОСТу провалов», то данное словосочетание не имеет смысла, поскольку под провалом подразумевается отклонение от установленной ГОСТом нормы (0,9Uном). Если быть точным, то можно назвать нормированием допустимую длительность провала (30 с), при превышении которого отклонение считается пониженным напряжением.

Влияние провалов на работу электрооборудования

Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:

Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.

Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.

Финансовая сторона вопроса

Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:

Как бороться с провалами напряжения?

Как мы выяснили, провалы являются случайным явлением, длительность которого зависит от срабатывания защитных систем, а глубина – удаленностью от проблемного участка. Поскольку изменить вероятность проявления не представляется возможным, то остается только влияние на масштаб провала и устранение последствий.

Сделать это можно путем оптимизации сети, чтобы производилась компенсация провалов при резких изменениях нагрузки, а также установки специальных приборов для контроля фазных напряжений на соответствие номинальному уровню и исключению несимметрии. Не менее эффективно действует стабилизирующее оборудование, установленное у потребителя электроэнергии. Более серьезные приборы могут выступать в роли регулятора напряжения и преобразователя основной частоты.

Если проблема вызывается замыканиями, то установка системы АПВ, а при критических провалах и АВР, может сократить предельно допустимую длительность отклонения до короткого прерывания. То есть, автоматическая система произведет повторное включение и если это не даст результата, произойдет ввод резерва.

Советуем ознакомиться и прочитать:

Провалы напряжения

Провалы напряжения могут привести к серьезным проблемам, например, к сбою в производственных процессах и к снижению качества. Подобные провалы возникают гораздо чаще, чем прерывания. Экономические последствия провалов напряжения часто сильно недооцениваются. Но что собой представляет провал напряжения на самом деле? Как возникает провал напряжения? Можно ли предотвратить провал напряжения или нужно попытаться ограничить возможный ущерб путем своевременного распознавания? В этой статье подробно освещаются эти вопросы.

Провалы напряжения могут привести к серьезным проблемам, например, к сбою в производственных процессах и к снижению качества. Подобные провалы возникают гораздо чаще, чем прерывания. Экономические последствия провалов напряжения часто сильно недооцениваются. Но что собой представляет провал напряжения на самом деле? Как возникает провал напряжения? Можно ли предотвратить провал напряжения или нужно попытаться ограничить возможный ущерб путем своевременного распознавания? В этой статье подробно освещаются эти вопросы.

Что собой представляет провал напряжения?

В соответствии с европейским стандартом EN 50160 провалом напряжения считается внезапное понижение эффективных значений напряжения до значения от 90 % до 1 % от заданного, после чего следует непосредственное восстановление напряжения. Длительность провала напряжения составляет от половины периода (10 мс) до минуты.

Рис. 1 Пример провала напряжения

Если эффективное значение напряжения не опускается ниже 90 % от заданного значения, это рассматривается как нормальное рабочее состояние. Если напряжение падает ниже 1 % от заданного значения, это считается прерыванием.

Таким образом, провал напряжения не следует путать с прерыванием. Прерывание возникает, например, после срабатывания предохранителя (тип. 300 мс). Пропадание напряжения в сети распространяется в форме провала напряжения по остальной распределительной электросети.

На рисунке (рис. 2) уточняется разница между провалом, коротким прерыванием и пониженным напряжением.

Рис. 2: Разница между провалом, прерыванием и пониженным напряжением

Как возникает провал напряжения?

1.Токи включения

Одна из известных причин небольшого провала напряжения — это токи включения конденсаторов, двигателей или других устройств. На следующем рисунке можно увидеть, что при запуске двигателя сила тока на короткое время увеличивается. Падение напряжения на полных сопротивлениях Z и Z1 приводит к незначительному провалу напряжения на распределителе низкого напряжения (зона провала 1) и немного большему провалу напряжения за полным сопротивлением Z1 (зона провала 2).

Рис. 3 «Запуск» двигателей может привести к провалу напряжения

Решение проблем, вызванных подобными провалами, заключается в оптимизации установки. Включение устройств не должно приводить к возникновению критических провалов напряжения.

2. Короткие замыкания в сети низкого напряжения

При замыкании в сети низкого напряжения протекает ток короткого замыкания. Вклад тока короткого замыкания зависит от величины полных сопротивлений Z и Z3. На практике полное сопротивление Z3 больше. Размер полного сопротивления Z3 определяется, в частности, типом и длиной кабеля. Чем больше длина кабеля, тем меньше будет ток короткого замыкания.

Ток короткого замыкания вызывает падение напряжения по полному сопротивлению Z, при этом наблюдается кратковременный провал напряжения на главном распределителе низкого напряжения (зона провала 1).

При коротком замыкании должен сработать предохранитель группы 3. Если до срабатывания предохранителя проходит 100 мс, то на всей установке наблюдается сильный провал напряжения на 100 мс.

Рис. 4 Типичный пример рабочего состояния, при котором провал напряжения возникает в результате короткого замыкания в сети низкого напряжения

Хотя короткие замыкания в сети низкого напряжения встречаются, на практике им часто не уделяют внимания. Короткие замыкания в сетях среднего напряжения более критичны.

3. Короткие замыкания в сети среднего напряжения

Чаще всего провалы напряжения наблюдаются в сетях среднего напряжения. Они могут быть, в частности, вызваны следующими факторами:

На следующем рисунке (рис. 5) приведена типичная структура сети среднего напряжения. Известные трансформаторные будки / местные распределительные подстанции (зеленые точки) соединены друг с другом по кольцу и подключены к распределительной станции (синие точки). В кольце всегда имеется разрыв (см. кольцо из зеленых точек справа снизу). При возникновении короткого замыкания по цепи протекает ток короткого замыкания (красная линия). Он протекает до тех пор, пока предохранитель на распределительной станции не отключит кольцо. Это показано на левом рисунке (в кольце слева вверху).

Таким образом, во время короткого замыкания кратковременно протекает сильный ток. Из-за полных сопротивлений сети это приводит к кратковременному понижению напряжения во всей сети. Это кратковременное понижение напряжения выражается в форме «провала напряжения».

Рис. 5 Большинство провалов напряжения вызывается короткими замыканиями в сети среднего напряжения

Около 75 % провалов напряжения возникает в сети среднего напряжения. Часто они неизбежны для потребителя.

Короткие замыкания в сети высокого напряжения

Замыкания в сети высокого напряжения часто вызываются грозами или (ошибочными) включениями. Последние обычно наблюдаются на концах линий высокого напряжения.

Проблемы, связанные с провалами напряжения

Провалы напряжения могут привести к отказу компьютерных систем, ПЛК-установок, реле и преобразователей частоты. В критических процессах всего один провал напряжения может вызвать высокие затраты, особенно критичны в этом отношении непрерывные процессы.

Примером этому служат литье под давлением, экструзионные процессы, печать или обработка таких пищевых продуктов, как молоко, пиво или прохладительные напитки.

Связанные с провалом напряжения затраты складываются из:

Средняя стоимость провала напряжения сильно зависит от отрасли:

Часто процессы протекают без присутствия людей, поэтому провалы напряжения обнаруживаются не сразу. В этом случае, например, возможен незамеченный останов машины для литья под давлением. Когда останов обнаружится, уже будет нанесен ощутимый ущерб.

Клиенты получат продукцию слишком поздно, а пластмасса в машине затвердеет. В типографиях или в бумажной промышленности возможен разрыв бумаги, что может привести даже к пожару. Другой известный пример, это ущерб, нанесенный производителю шин Vredestein в результате провалов напряжения. www.rtvoost.nl

Уязвимость ИТ-установок для провалов и прерывания напряжения

Именно ИТ-установки особенно подвержены влиянию провалов и прерывания напряжения. Это означает, что все процессы, управляемые микропроцессорами, уязвимы в отношении этих сбоев, например,

На построенной Information Technology Industry Council кривой ITI-CBEMA видно, когда провал напряжения приводит к отказу ИТ-устройств, а когда пик напряжения вызывает повреждение ИТ-устройств. Хотя модель была разработана для сетей 120 В- 60 Гц, она также используется для устройств, подключенных к сетям 230 В- 50 Гц. Модель может использоваться производителями в качестве руководства при проектировании.

Рис. 6 Кривая ITI (CBEMA) показывает, когда провал напряжения приводит к отказу ИТ- оборудования

Как можно противостоять провалам напряжения? Провалы напряжения в результате токов включения можно в определенной мере ограничить за счет усовершенствования конструкции установки. Провалы напряжения в результате коротких замыканий в сети низкого напряжения возникают, как правило, крайне редко. Большинство провалов напряжения вызывается замыканиями в сети среднего напряжения. Повлиять на причины возникновения подобных провалов невозможно.

Сами провалы можно устранить с помощью следующих устройств:

Исходя из этого видно, что устранение провалов напряжения обходится недешево. Поэтому своевременное определение провалов напряжения может оказаться очень полезным. С помощью хорошего инструмента создания отчета можно определить причины и принять целенаправленные (и поэтому более экономичные) меры.

Сигналы о провале напряжения

Компания Janitza предлагает широкий ассортимент анализаторов, способных распознавать короткие прерывания и провалы напряжения. Сетевой анализатор UMG 604 непрерывно контролирует более 800 электрических характеристик. Все каналы проверяются 20 000 раз в секунду, при этом регистрируются короткие прерывания и провалы напряжения и выдаются соответствующие предупреждения. На основании этих событий может быть отправлено сообщение электронной почты или SMS. Входящий в объем поставки пакет ПО GridVis-Basic позволяет генерировать подробные отчеты.

Рис. 7 Для оповещения о провалах напряжения предусмотрен компактный сетевой анализатор UMG 604

Анализатор UMG 604, установленный на панели ввода питания, представляет собой масштабное и экономичное решение для распознавания, регистрации, сигнализации и оповещения о провалах напряжения. Измерительное устройство оснащено веб-сервером, благодаря этому без больших затрат и без использования сложного ПО можно напрямую вызывать важнейшие параметры из измерительных устройств. С помощью встроенного браузера событий провалы и прерывания напряжения можно анализировать и документировать в форме отчетов.

Рис. 8 Сетевой анализатор на панели ввода питания распознает отклонения в напряжении

Компания Janitza предлагает следующие измерительные устройства для распознавания кратковременных прерываний:

Анализ с помощью GridVis

Базовый пакет программы GridVis (GridVis-Basic) бесплатно поставляется вместе с измерительными устройствами Janitza. С помощью этого пакета, в частности, можно:

Рис. 9 С помощью GridVis можно выполнять даже масштабный анализ.

С использованием встроенного генератора отчетов можно объединять даже периодически возникающие провалы напряжения, короткие прерывания и пики напряжений с помощью кривой ITI-(CBEMA) в наглядные отчеты.

На расположенном ниже рисунке (рис. 10) видно, что возникло три провала напряжения, приведших к остановке установки.

Pис. 10 Отчет о провалах и пиках напряжения на основании кривой ITI

Итог

Провалы напряжения возникают относительно часто, они не всегда распознаются. Экономический ущерб от провалов напряжения больше, чем от прерываний. Путем дооснащения электрической инфраструктуры можно предотвратить целый ряд провалов напряжения. Использование бесперебойных источников питания или дроссельных катушек может снизить вред, нанесенный провалами напряжения. В некоторых случаях эти меры представляются слишком дорогостоящими. Первым шагом, тем не менее, всегда является распознавание и документирования провалов напряжения. Компания Janitza предлагает готовые решения, которые устойчиво и надежно осуществляют непрерывный контроль и анализ всех производственных процессов.

За счет использования современных измерительных устройств можно своевременно обнаружить и устранить проблемы, связанные с качеством напряжения. Повышение надежности подачи электроэнергии гарантировано, затраты на техобслуживание снижаются, а срок службы производственной установки увеличивается.

Источник: «ТК Профэнерджи»

1.6. Провал напряжения

тральном проводнике, равный трехкратному току нулевой последовательности, существенно увеличивает нагрузку нулевого провода и приводит к повышенным потерям мощности в сети и значительным снижениям напряжений.

Провал напряжения это внезапное понижение напряжения в точке электрической сети ниже 0,9 ном, за которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от десяти миллисекунд до нескольких десятков секунд.

Провал напряжения характеризуется показателем –– длительностью про-

вала напряжения (

глубиной (

) и частотой появления провалов

∆ п), а такженапряжения∆(рисп . 1.3).

ном

∆ п

Длительность провала напряжения –– это

интервал времени между начальным моментом

провала напряжения и моментом восстановления

∆ п

напряжения до первоначального или близкого к

уровня.

немуГлубина провала напряжения равна разно-

сти между номинальным значением напряжения

0

и минимальным среднеквадратическим значени-

ем напряжения в течение провала напряжения.

Рис. 1.3. Показатели провала

Частота

появления провалов напряжения

напряжения

это количество провалов напряжения опреде-

ленной глубины и длительности за определенный промежуток времени. Длительность автоматически устраняемого провала напряжения в любой

точке присоединения к электрическим сетям, согласно ГОСТ 13109 97, напряжением до 110 кВ включительно не должна превышать предельно допускаемого значения, равного 30 с.

Состав совокупности провалов может представляться интенсивностью

провалов определенного характера :

δ п, ∆ п ,

(1,21)

где δ п, ∆ п –– число провалов с заданной относительной глубиной δ п и длительностью ∆ п; –– общее число провалов за заданный интервал времени.

Основными причинами возникновения провалов напряжения являются короткие замыкания в сети, приводящие к отключению элементов сети, которые затем могут снова автоматически включиться. Напряжение восстанавливается либо после отключения к. з., либо после автоматического восстановления питания устройствами АПВ или АВР.

1.7.Импульс напряжения

Импульс напряжения это резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд.

Импульс напряжения характеризуется показателем импульсного напряжения ( имп ), а также амплитудой (∆ имп), длительностью импульса (∆ имп) и длительностью импульса на уровне 0,5 его амплитуды (∆ имп , , рис. 1.4).

имп

∆ имп ,

∆ имп

0,5∆ имп

Рис. 1.4. Определение импульса напряжения

Импульсное напряжение — это максимальное мгновенное значение напряжения, равное сумме мгновенного значения напряжения в сети в момент начала импульса и амплитуды импульса. Амплитуда импульса это максимальное мгновенное значение импульса напряжения.

Длительность импульса равна интервалу времени между начальным моментом импульса и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня.

Длительность импульса на уровне 0,5 его амплитуды равна интервалу времени между пересечением кривой импульса с горизонтальным уровнем на половине амплитуды.

Импульсы напряжения возникают чаще всего в результате коммутационных переходных процессов в электрической сети, а также вследствие работы цепей импульсного управления полупроводниковых преобразователей.

Импульсы напряжения приводят к нарушению работы радиоэлектронных устройств, в том числе ЭВМ и полупроводниковых устройств с импульсным управлением.

Значения импульсных напряжений для грозовых и коммутационных импульсов, возникающих в электрических сетях энергоснабжающей организации, приведены в справочной литературе.

Нормы ГОСТов на импульсные напряжения пока не установлены.

1.8.Временное перенапряжение

Временное перенапряжение –– это повышение напряжения в точке электрической сети продолжительностью более 10 мс, возникающее в системах электроснабжения при коммутациях или коротких замыканиях.

Провал напряжения

Тесла / Провал напряжения

Провал напряжения — внезапное понижение напряжения в точке элек­трической сети ниже 0,9Uном, за которым следует восстановление напряже­ния до первоначального или близкого к нему уровня через промежуток вре­мени от десяти миллисекунд до нескольких десятков секунд

Покажем как сказывается внезапные перерывы в электроснабжении на примере сельскохозяйственных потребителей.

Провал напряжения (рисунок 1) характеризуют глубиной δUп, длительностью ∆tn и частостью появления Fn

Рисунок 1 — Схематический вид провала напряжения

Глубина провала рассчитывается по формуле

где Uном— номинальное напряжение, В; Umin — остаточное напряжение в точке контроля, В.

Длительность провала рассчитывается как разница между временем восстановления напряжения tк и временем начала провала напряжения tн

 Δtп=tк-tн

Установлено, что длительность восстанавливаемого провала напряжения не может превышать 30 с — об этом сказано в ГОСТ 13109-97

Частость появления провалов напряжения рассчитывается по формуле

где m(δUп Δtп) — число провалов глубиной δUп и длительностью Δtп за рассматриваемый интервал времени Т; М — суммарное число провалов напряжения за рассматриваемый интервал времени Т.

В отличие от ранее рассмотренных ПКЭ, провалы напряжения являются совершенно случайными, но вероятными событиями и характеризуют анормальные режимы работы системы электроснабжения. Провалы напряжения характеризуют надежность электроснабжения, «оценивая» его бесперебойность, и возникают в любой сети. Первоначальной причиной провалов является попадание молнии в линию или на шины открытого распределительного устройства. При этом возникает короткое замыкание, срабатывают средства защиты оборудования и системы автоматики (АПВ, АВР). Провалы напряжения могут быть обусловлены ошибками персонала или ложными срабатываниями средств защиты и автоматики. Глубина провала в точке наблюдения (шины подстанции, зажимы электроприемника и т.п.) тем больше, чем ближе место повреждения к этой точке, длительность провала определяется совокупностью времени срабатывания средств защиты и автоматики, благодаря действию которых напряжение может быть восстановлено.

Провал напряжения может иметь несколько ступеней, когда напряжение восстанавливается до первоначального по мере восстановления исходной схемы, или переключений в схеме, связанных с присоединением резервных источников питания, что существенно влияет на восстановление функций электроприемников после воз­можного отказа, вызванного этим провалом.

Появление провалов неопределенно по месту и времени и поэ­тому относится к случайным событиям, вероятность которых должна рассматриваться как прогноз. Вероятность их появления определя­ется по результатам измерений и (или) расчетов, а ежегодная час­тость меняется в зависимости от типа системы энергоснабжения и точки наблюдения. Возможное число провалов напряжения за год может составлять от нескольких единиц до сотен в зависимости от грозовой активности в регионе, где расположена электрическая сеть.

На Земле одновременно происходят приблизительно 2000 гроз [1], вызывая около 100 разрядов молний ежесекундно. По поверхности земного шара грозы распределяются неравномерно. Частота их образования зависит от ряда факторов: географического положения и рельефа местности, времени года, времени суток. Интенсивность грозовой деятельности в какой-либо местности характеризуется средним числом грозовых часов в году [2]. В ряде стран пользуются другой характеристикой грозовой деятельности — годовым числом грозовых дней. Эти характеристики грозовой активности получают по данным многолетних метрологических наблюдений. Для практических задач важна удельная плотность ударов молнии в землю, т.е. годовое число ударов на 1 км поверхности. В России принято среднее число ударов молнии на 1 км поверхности земли за 100 грозовых часов. В среднем в европейской части число грозовых дней в году составляет от 15 до 35, а число ударов молнии за год — от 1 до 5 на 1 км площади.

Наиболее часто подвержены ударам молнии воздушные линии электропередачи. Общая длина линий напряжением 35—1150 кВ в стране достигла почти 800 тыс. км, а протяженность воздушных линий меньшего номинального напряжения исчисляется несколь­кими миллионами километров [3]. Очевидно, что, зная число уда­ров молнии в линии определенного напряжения, можно прогнозиро­вать число коротких замыканий, вызванных ими, и отключаемых автоматикой поврежденных линий и соответственно прогнозировать провалы напряжения.

Характеризуя надежность электрической сети как ее способность обеспечить бесперебойное электроснабжение, можно также считать, что провалы напряжения (кратковременные или длительные) явля­ются дополнительным критерием уровня надежности этой сети. Про­вал напряжения любой длительности и глубины свидетельствует не только о состоянии и исправности средств автоматики и защиты, но и о способности сети обеспечить резервное электроснабжение, не допуская при этом тепловой перегрузки ее оборудования (линий, трансформаторов и т.п.).

Основным видом повреждения линий сетей являются короткие замыкания. Короткие замыкания (КЗ) возникают достаточно часто при эксплуатации электрических сетей и электростанций. Короткие замыкания являются одной из основных причин нарушения нормального режима работы электроустановок, а в некоторых случаях и энергосистемы в целом. Короткие замыкания могут происходить через дугу или непосредственно, без переходного сопротивления, так называемые «металлические» КЗ.

В количественном отношении КЗ в сетях распределяются примерно следующим образом: однофазные — 65 %, междуфазные на землю —К(1.1) = 20 %, двухфазные — 10 % и трехфазные — 5 %.

На относительное число тех или иных видов повреждений и характер их протекания оказывают влияние рабочее напряжение, режим заземления нейтрали сети, время отключения повреждения и некото­рые другие факторы. Трехфазные КЗ являются редким видом повреж­дения, но их принято учитывать для сетей всех видов и напряжений. При увеличении номинального напряжения и расстояния между фазами вероятность возникновения таких КЗ резко уменьшается.

Влияние провалов напряжения на работу электроприемников

Влияние провалов напряжения на функционирование электропри­емников можно рассматривать в двух аспектах: влияние на техноло­гическое оборудование в промышленности, функционирование кото­рого, как правило, связано с качеством электроснабжения, и влияние на телекоммуникационные системы, системы микропроцессорного управления и информационные системы.

В промышленности наиболее распространенным видом электро­оборудования являются асинхронные и синхронные двигатели, исполь­зуемые в качестве приводов механизмов. Телекоммуникационные системы используются во всех сферах жизнедеятельности и в про­мышленности. Поэтому возможность нарушения условий нормаль­ного функционирования этих электроприемников всегда рассматри­вается с позиций надежности электроснабжения, перерыв которого, даже кратковременный, может привести к технологическому ущербу.

В этой связи из массы различных механизмов можно выделить некоторые, самозапуск которых применяется наиболее часто. В электроэнергетике, металлургии, химии, горнорудной про­мышленности особое значение приобретает запуск центробежных насосов, обеспечивающих перекачку воды и других технологических жидкостей. Прекращение этого процесса приводит к тяжелым ава­риям. Например, если насос в результате останова потерял воду, включится незаполненным, то это приведет к выходу его из строя. Это происходит при снижении скорости вращения привода до 50 % номинальной. При этом сохранение работоспособности насоса воз­можно только благодаря самозапуску его привода, который может быть успешным, если длительность провала напряжения не превы­шает 1—3 с.

Самозапуск асинхронных двигателей происходит успешней, чем синхронных, которые применяют в качестве привода для турбокомп­рессоров высокой производительности. Так, при достаточно длитель­ных провалах напряжения синхронный двигатель может потерять скорость вращения настолько, что его ресинхронизация будет невоз­можной и при самозапуске он может потерять устойчивость. В этих условиях самозапуск синхронных двигателей мощностью до несколь­ких сотен киловатт допускается при длительности перерыва электро­снабжения не более 1,5 с. При увеличении перерыва до 3 с самозапуск возможен только при закороченной обмотке возбуждения. Однако для двигателей мощностью 1 000—6 000 кВт из-за очень малого момента инерции и высокого коэффициента загрузки время достижения критического угла устойчивости не превышает 0,2 с. Во многих случаях это время меньше времени срабатывания комму­тационной аппаратуры.

Телекоммуникационные и информационные системы восприим­чивы ко многим видам помех и особенно к провалам напряжения. Чувствительность этих систем к такого рода помехам проявляется главным образом через их блоки питания. По надежности электро­снабжения телекоммуникационные и информационные системы отно­сятся к электроприемникам I категории, которые можно разделить на три группы: А, В и С. К электроприемникам группы А, перерыв элек­троснабжения которых недопустим, относятся : информаци­онно-вычислительные и телекоммуникационные системы, системы голосового оповещения и АТС, системы охранной и пожарной сигна­лизации, системы контроля и управления доступом, видеонаблюде­ния, освещение безопасности, системы диспетчерского управления.

 К электроприемникам группы В, длительность провала напряже­ния для которых допускается на время включения резервного источ­ника питания, относятся электроустановки, обеспечивающие охрану Зд0р0вья и жизни людей: пожарные насосы, системы дымоудаления и кондиционирования, холодильные камеры, сигнальные огни.

К электроприемникам группы С, перерыв электроснабжения кото­рых допускается на время устранения аварии, относятся технологи­ческие и инженерные системы, не вошедшие в группы А и В.

Средства защиты от провалов напряжения

Провал напряжения, рождаясь в недрах сети как случайное событие, достигает зажимов электроприемников с глубиной и длительностью, которые зависят от удаленности электроприемника от точки короткого замыкания и его вида, времени срабатывания защиты, отключающей повреждение на линии. Восстановление напряжения после провала наступает благодаря действию системы автоматического повторного включения (АПВ), а при неуспешном АПВ, при длительных провалах, благодаря устройствам автоматического ввода резервного питания (АВР). В настоящее время ввиду широкого внедрения компьютерных и телекоммуникационных технологий сетевые средства защиты и автоматики не в состоянии защитить это оборудование от провалов напряжения. Сети, питающие такие технологические системы, требуют абсолютно бесперебойного электроснабжения. В таких сетях устанавливают источники бесперебойного питания, а при длительном исчезновении напряжения до нескольких десятков минут и более, — дизель-генераторные установки мощностью до нескольких сотен киловатт. Но применение таких дорогостоящих систем при стоимости резервных источников (ИБП и ДГУ) выше 20 % стоимости защищаемого оборудования и информации не рентабельно. Практика последних лет показывает, что этим критерием редко пользуются и руководствуются стоимостью ущерба, обусловленного потерей информации, требованиями безопасности, сохранения здоровья и жизни людей.

Список использованной литературы

1. Базуткин В. В. , Ларионов В. П. , Пинталь Ю. С. Техника высоких напряжений: изоляция и перенапряжения в электрических системах. М.: Энергоатомиздат, 1986 г. 464 с.

2. Кужекин И.П., Ларионов В.П., Прохоров Е.Н. Молния и молниезащита.М.: Знак, 2003 г.330 с.

3. Электротехнический справочник: В 4 т. Т3. Производство, передача и распределение электрической энергии / Под общ. ред. проф. МЭИ. -8-е изд., испр. и доп. М.: Излательство МЭИ, 2002 г.

Чем опасны провалы напряжения в сети и как от них защититься?

Провалы напряжения в сети представляют серьезную проблему многим приборам, ведь они могут понизить качество работы приборов, а также вызвать сбой в работе устройств, подключенных к такой сети. Данное явление встречается намного чаще, чем обычное прерывание. Поэтому следует знать, чем опасны провалы напряжения, какие причины их возникновения, как защититься от данного вида проблем и как с ними бороться. Как раз об этом пойдет речь в данной статье.

Что такое провал напряжения

Согласно европейским стандартам провалом напряжения является резкое снижение эффективных величин напряжения до показателя от 90 процентов до 1 процента от установленного. После происходит быстрое поднятие или восстановление напряжения. Такие провалы кратковременны, их продолжительность бывает от половины периода до одной минуты.

Обычное рабочее состояние напряжения в электросети не должно опускаться ниже 90 процентов. Если происходит падение всего на 1 процент от заданного эффективного значения, то это является прерыванием.

Соответственно провал и прерывание – это не одно и тоже. Прерывание появляется только после срабатывания предохранителя. Таким образом пропадание напряжения в электросети распространяется в виде провала по всей распределительной сети.

Причины возникновения провалов

Большая нагрузка

При подключении некоторых потребителей к сети создается большая нагрузка. К таким приборам относятся, например, мощные электродвигатели, которые при запуске используют существенно большие токи, чем номинальные. Если провода рассчитаны только для номинального тока, то соответственно пусковые токи могут серьезно снизить напряжение в сети.

Такое явление напрямую связано с резервом электросети полностью в соответствии с мощностью, а также с сопротивлением в месте общего соединения, и в точном соответствии с сопротивлением провода. Провалы напряжения, вызванные пусковыми токами, имеют низкие данные падения напряжения, и в то же время характеризуются достаточно большей продолжительностью в сравнении с пробелами вызванными неисправностями распределительных электросетей, и могут продолжатся от 1 до 10 секунд.

Существуют методы устранения проблем у приборов, которые произошли из-за сопротивления проводов. Приборы с большой нагрузкой можно подключить к сети с помощью применения точек общего соединения или с помощью специальной вторичной обмотки силового трансформатора. Однако, если данная проблема заключается в полном сопротивлении в точке общего соединения, то для защиты и устранения проблемы необходимо принимать более серьезные действия.

Один из вариантов разрешения данной проблемы заключается в применении специализированного преобразователя частоты, с его помощью достигается снижение величин провалов благодаря распределению дополнительной нагрузки. Еще одним дополнительным решением данной проблемы может быть использование устройств, благодаря которым цепи питаются с меньшим сопротивлением. Все же следует отметить, что данное решение является затратным.

Эта проблема представляет достаточно серьезную опасность для электропотребителей и может привести к плохим последствиям, например, сгорание двигателя в электроприборе. Если проблему провалов не удалось решить способами, приведенными выше, то их влияние на приборы можно устранить с помощью стабилизаторов, электронных регуляторов, а также динамических восстановителей напряжения. Также важно помнить, что провалы могут быть в любой сети, не зависимо от класса напряжения.

Сетевое происхождение

Распределение электросети достаточно сложный процесс. От топологии сети, нагрузки генератора в конкретной точке общего соединения, а также относительной величины сопротивления зависит уровень воздействия определенного повреждения на каком-то определенном участке на другие участки электросети.

Продолжительность появившегося провала напрямую зависит от того, сколько необходимо времени защитной системе для обнаружения и, в последствии, его устранения. Обычно для этого необходимо пару миллисекунд. Все же следует помнить, что существуют повреждения, которые имеют случайный характер, например, если упадет дерево на воздушные линии электропередачи. Однако скорость устранения зависит от характера повреждения и параметров линии и защит. Если это линия с изолированной нейтралью, то при однофазном замыкании на землю повреждение может ликвидироваться за время до двух часов – на время отыскания повреждения персоналом. Двухфазное замыкание, как правило, отключается за доли секунды действием защит от повреждений.

В случае полного отключения определенного участка на достаточно продолжительное время с помощью автоматики, которая служит в качестве защиты, все устройства, находящиеся на участке, должны быть полностью обесточенными до того времени пока не будет устранена проблема, и проведена специалистами проверка, а также восстановлено электроснабжение на поврежденном участке. Устройство автоматического повторного включения может упростить эту ситуацию, и в то же время может посодействовать возникновению большего количества провалов. Автоматическое повторное включение восстанавливает питание после выдержки времени в случае срабатывания защитной автоматики. Выдержка времени зависит от требований к электроснабжению в электрической сети. Для ответственных потребителей выдержка времени составляет доли секунды, для других категорий потребителей выдержка времени может быть увеличена до нескольких секунд.

В случае полного устранения повреждения происходит повторный запуск оборудования, и питание на аварийном участке переходит в стабильное, нормальное состояние. Однако, если при автоматическом повторном включении повреждение не было ликвидировано, то срабатывают защитные устройства и с минимальной выдержкой времени обесточивают поврежденный участок электрической сети. Для предотвращения развития аварийной ситуации повторное включение обесточенного участка допускается только после выявления и устранения повреждения.

Однако если исправить повреждение с помощью вторичного включения не получилось, то необходимо сделать повторное включение защитной автоматики. Повторение данного процесса будет соответствовать количеству запусков пользователем в программу автоматического поворотного выключателя. При этом нужно учитывать, что при каждой осуществляемой попытке вторичного запуска на всех других участках будет повторный провал напряжения, это означает, что другие пользователи будут испытывать целую череду провалов.

Способы защиты

Итак, вы узнали, что собой представляет данное явление, теперь поговорим о том, как может быть организована защита от провалов напряжения в сети. Если защитить нужно маломощную нагрузку, достаточно установить источник бесперебойного питания (ИБП). Такое решение может применяться даже на промышленных объектах для аварийного сворачивания технологических процессов и безопасного сохранения информации.

Если же нужна защита мощной нагрузки от провалов напряжения, в этом случае необходимо использовать специализированные системы, которые осуществляют динамическое восстановление напряжения. Такие системы способны компенсировать недостающую часть напряжения, однако работает данный вид защиты непродолжительное время. Именно поэтому они не способны защитить от длительных провалов напряжения в электрической сети.

Вот и все, что хотелось рассказать о том, что такое провалы напряжения в сети, какие причины их возникновения и как можно защитить оборудование от этого явления. Следует отметить, что к провалам наиболее чувствительно компьютерное оборудование. Поэтому если в вашей сети наблюдается данное явление, обязательно защитите электронику вышеуказанными методами.

Будет полезно прочитать:

провал напряжения - это... Что такое провал напряжения?

 провал напряжения

провал напряжения Внезапное значительное снижение напряжения в системе электроснабжения с последующим его восстановлением.

[ГОСТ 23875-88]

провал напряжения

Внезапное понижение напряжения в точке электрической сети ниже 0,9 Uном, за которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от десяти миллисекунд до нескольких десятков секунд.

[ГОСТ 13109-97]

провал напряжения

Динамическое изменение напряжения в сети электропитания в виде снижения напряжения за нижний допустимый предел

[ГОСТ 19542-93] 

провал напряжения Временное уменьшение напряжения в конкретной точке электрической системы ниже порогового значения.

Примечание — Прерывание напряжения является особым случаем провала напряжения. Отличие прерывания напряжения от провала напряжения может быть установлено последующей обработкой результатов измерений. [ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

EN

voltage dip a sudden reduction of the voltage at a point in an electrical system followed by voltage recovery after a short period of time from a few cycles to a few seconds Source: 604-01-25 [IEV number 161-08-10]

voltage dip

temporary reduction of the voltage magnitude at a point in the electrical system below a threshold

NOTE 1 Interruptions are a special case of a voltage dip. Post-processing may be used to distinguish between voltage dips and interruptions.

NOTE 2 A voltage dip is also referred to as sag. The two terms are considered interchangeable; however, this standard will only use the term voltage dip [IEC 61000-4-30, ed. 2.0 (2008-10)]

FR

creux de tension baisse brutale de la tension en un point d'un réseau d'énergie électrique, suivie d'un rétablissement de la tension après un court laps de temps de quelques périodes à quelques secondes Source: 604-01-25 [IEV number 161-08-10]

creux de tension

baisse temporaire de l’amplitude de la tension en un point du réseau d’énergie électrique en dessous d’un seuil donné

NOTE 1 Les interruptions sont un cas particulier des creux de tension. Les traitements ultérieurs permettent de faire la distinction entre creux de tension et interruption.

NOTE 2 La Note 2 s'applique uniquement à la version anglaise. [IEC 61000-4-30, ed. 2.0 (2008-10)]

Провал напряжения

Примечание

(1)- Мнение автора карточки

Справочник технического переводчика. – Интент. 2009-2013.


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.