Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Полимеры что это такое


Полимер - это... Что такое Полимер?

Полимер — высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов.[1]), состоит из большого числа повторяющихся одинаковых или различных по строению атомных группировок — составных звеньев, соединенных между собой химическими или координационными связями в длинные линейные (например, целлюлоза) или разветвленные (например, амилопектин) цепи, а также пространственные трёхмерные структуры.

Часто в его строении можно выделить мономер — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, называют например поливинилхлорид (—СН2—СНСl—)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат...

Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Наука о полимерах

Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х гг. XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.

Синтетические полимеры. Искусственные полимерные материалы

Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шелк, хлопок и т.п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трехмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX в., хотя предпосылки для этого создавались ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях – путем переработки природных органических полимеров в искусственные полимерные материалы и путем получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы – целлулоид – был получен еще в начале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят пленки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной пленки из нитроцеллюлозы.

Производство синтетических полимеров началось в 1906 г., когда Л. Бакеланд запатентовал так называемую бакелитовую смолу – продукт конденсации фенола и формальдегида, превращающийся при нагревании в трехмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т.п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата – без органического стекла под названием «плексиглас» было бы невозможно массовое самолетостроение в годы войны.

После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое еще до войны. В 50-х гг. XX в. было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон – искусственная шерсть из полиакрилонитрила замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шелк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера–Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны – наиболее распространенные герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны – элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

Список замыкают так называемые уникальные полимеры, синтезированные в 60-70 гг. XX в. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.

Классификация полимеров

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

Следует отметить, что в технических материалах часто используют сочетания отдельных групп полимеров. Это композиционные материалы (например, стеклопластики).

По форме макромолекул полимеры делят на линейные, разветвленные, ленточные, пространственные, плоские.

По фазовому составу полимеры подразделяются на аморфные и кристаллические.

Аморфные полимеры однофазны и построены из цепных молекул, собранных в пачки. Пачки могут перемещаться относительно других элементов.

Кристаллические полимеры образуются тогда, когда их макромолекулы достаточно гибкие и образуют структуру.

По полярности полимеры подразделяют на полярные и неполярные. Полярность определяется наличием в их составе диполей – молекул с разобщенным распределением положительных и отрицательных зарядов. В неполярных полимерах дипольные моменты связей атомов взаимно компенсируются.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные.

Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим.

Термореактивные полимеры на первой стадии образования имеют линейную структуру и при нагреве размягчаются, а затем, по причине протекания химических реакций, затвердевают (образуя пространственную структуру) и в дальнейшем остаются твердыми.

Природные органические полимеры

Основная статья: Биополимеры

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных – высокомолекулярных.

Особенности полимеров

Особые механические свойства:

Особенности растворов полимеров:

Особые химические свойства:

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством — гибкостью.

Примечания

  1. ↑ http://slovari.yandex.ru/dict/bse/article/00015/79000.htm

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Что такое полимеры?

Представьте следующую ситуацию. Вы выходите из магазина и торопитесь поскорее закинуть пакет в машину. Дело сделано. Вы быстро проверяете телефон и садитесь за руль. Заходя в свою квартиру, вы вытираете ноги о резиновый коврик, вынимаете все из пакетов: сковородку с антипригарным покрытием, игрушки для ребенка, пену для бритья, пару рубашек, обои. Вроде ничего не забыли. Вы прихватываете с собой бутылку воды и идете к компьютеру — пора бы и поработать. Все, о чем шла речь выше, содержит полимеры. Вплоть до магазина.

Полимеры — что это такое?

Полимеры — это материалы, состоящие из длинных повторяющихся цепочек молекул. Они обладают уникальными свойствами в зависимости от типа соединяемых молекул и от того, как они соединены. Некоторые из них гнутся и тянутся, например резина и полиэстер. Другие твердые и жесткие, как эпоксиды и органическое стекло.

Термин «полимер» обычно используется для описания пластиков, которые являются синтетическими полимерами. Как бы то ни было, естественные полимеры также существуют: к примеру, резина и дерево — это естественные полимеры, состоящие из простого углеводорода, изопрена. Белки — тоже естественные полимеры, они состоят из аминокислот. Нуклеиновые кислоты (ДНК и РНК) — полимеры нуклеотидов — сложных молекул, состоящих из азотсодержащей основы, сахара и фосфорной кислоты.

Кто до этого додумался?

Отцом полимеров считается преподаватель органической химии из Швейцарской высшей технической школы Цюриха Герман Штаудингер.

Герман Штаудингер. Источник: Wikimedia

Его исследования 1920-х гг. проложили путь для последующей работы, как с естественными, так и с синтетическими полимерами. Он ввел два термина, являющихся ключевыми для понимания полимеров: полимеризация и макромолекула. В 1953 г. Штаудингер получил заслуженную Нобелевскую премию «за его открытия в поле макромолекулярной химии».

Полимеризация — метод создания синтетических полимеров путем комбинирования более маленьких молекул, мономеров, в цепочку, скрепляемую ковалентными связями. Различные химические реакции, например те, что вызваны теплом и давлением, изменяют химические связи, которые скрепляют мономеры. Процесс заставляет молекулы связываться в линейной, разветвленной или пространственной структуре, превращая их в полимеры. Эти цепочки мономеров также называют макромолекулами. Одна макромолекула может состоять из сотен тысяч мономеров.

Виды полимеров

Вид полимера зависит от его структуры. Из вышенаписанного мы понимаем, что таких видов должно быть три.

Линейные полимеры. Это соединения, в которых мономеры химически инертны по отношению друг к другу и связаны лишь силами Ван-дер-Ваальса (силы межмолекулярного (и межатомного) взаимодействия с энергией 10–20 кДж/моль. — Прим. ред.). Термин «линейные» вовсе не обозначает прямолинейное расположение молекул относительно друг друга. Наоборот, для них более характерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Разветвленные полимеры. Они образованы цепями с боковыми ответвлениями (число ответвлений и их длина различны). Разветвленные полимеры более прочны, чем линейные.

Линейные и разветвленные полимеры размягчаются при нагревании и вновь затвердевают при охлаждении. Такое их свойство называется термопластичностью, а сами полимеры — термопластичными, или термопластами. Связи между молекулами в таких полимерах могут быть разорваны и соединены по новой. Это значит, что пластмассовые бутылки можно использовать для производства других полимерсодержащих вещей, от коврика до флисовых курток. Конечно, можно наделать еще бутылок. Все, что понадобится для переработки, — высокая температура. Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под действием реагентов. К термопластам относятся поливинилхлорид, полиэтилен, полистирол и др.

Если же макромолекулы содержат реакционно-способные мономеры, то при нагревании они соединяются множеством поперечных связей, и полимер приобретает пространственную структуру. Такие полимеры называют термоактивными, или реактопластами.

С одной стороны, реактопласты обладают положительными качествами: они более твердые и теплостойкие. С другой стороны, после разрушения связей между молекулами термоактивных полимеров ее не получится установить второй раз. Переработка в таком случае отпадает, а это очень нехорошо. Самые распространенные полимеры этой группы — полиэстер, винилэстер и эпоксиды.

Источник: Pixabay.com

Использование полимеров

Отметим, что полимеры применяются почти во всех сферах современной человеческой жизни. Пакеты в магазине, пластиковые бутылки, текстильные волокна, телефоны, компьютеры, упаковки для еды, автозапчасти, игрушки — полимеры повсюду. В производстве наиболее часто используются полиэтилен и полипропилен. Их молекулы могут содержать от 10 тыс. до 200 тыс. мономеров.

Будущее полимеров

Исследователи экспериментируют с различными типами полимеров, нацеливаясь на развитие медицины и улучшение продуктов, которые мы уже используем. Например, укрепленные углеволокном полимерные соединения должны сделать автомобили легче (что означает снижение потребления топлива) и безопаснее.

Полимеры также используются для развития голограмм. Ученые из Университета Пенсильвании создали голограмму на гибком полимерном материале, в который были включены золотые наностержни. Новое устройство может поддерживать несколько изображений вместо одного.

«Это важный шаг, ведь теперь можно записывать несколько голографических изображений и менять их, просто растягивая полимер», — говорит ведущий автор исследования, профессор из Университета Пенсильвании Ритеш Агаруол.

Искусственная кожа, сделанная из силикона (который, к слову, тоже полимер), может стать будущим в отрасли борьбы со старением. Кремы на основе полимеров должны помочь в подтягивании кожи, а значит, прощайте, морщины и мешки под глазами. Кроме того, искусственная кожа должна помочь людям с заболеваниями кожи, например с экземой, а также может быть использована для защиты от солнца.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

sciencepop.ru

Полимеры - это... Что такое Полимеры?

Цепочки молекул полипропилена.

Полиме́ры (греч. πολύ- — много; μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются.[1] Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.[2]

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (—СН2—CHCl—)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

Особенности

Особые механические свойства:

Особенности растворов полимеров:

Особые химические свойства:

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

Классификация

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

Следует отметить, что в технических материалах часто используют сочетания разных групп полимеров. Это композиционные материалы (например, стеклопластики).

По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается,[кем?] что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных — высокомолекулярных (см. Химическая эволюция).

Типы

Синтетические полимеры. Искусственные полимерные материалы

Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шёлк, хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX века, хотя предпосылки для этого появились ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях — путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы — целлулоид — был получен ещё в середине XIX века. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы.

Производство синтетических полимеров началось в 1906 году, когда Лео Бакеланд запатентовал так называемую бакелитовую смолу — продукт конденсации фенола и формальдегида, превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата — без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.

После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое ещё до войны. В 50-х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон — искусственная шерсть из полиакрилонитрила, — замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны — наиболее распространенные герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны — элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

Список замыкают так называемые уникальные полимеры, синтезированные в 60—70 годы XX века. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.

Огнеупорные полимеры

Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого применяются различные добавки или используются галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путем включения в конденсацию хлорированных или бромированных мономеров, например, гексахлорэндометилентетрагидрофталевой кислоты (ГХЭМТФК), дибромнеопентилгликоля или тетрабромфталевой кислоты. Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике.

Действие гидроксида алюминия основано на том, что под высокотемпературным воздействием выделяется вода, препятствующая горению. Для достижения эффекта требуется добавлять большие количества гидроксида алюминия: по массе 4 части к одной части ненасыщенных полиэфирных смол.

Пирофосфат аммония действует по другому принципу: он вызывает обугливание, что вместе со стеклообразным слоем пирофосфатов даёт изоляцию пластика от кислорода, ингибируя распространение огня.

Новым перспективным наполнителем являются слоистые алюмосиликаты, производство которых создаётся в России[3].

Применение

Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Наука о полимерах

Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х годах XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.

См. также

Примечания

dic.academic.ru

полимеры - это... Что такое полимеры?

ПОЛИМЕ́РЫ -ов; мн. (ед. полиме́р, -а; м.). [от греч. polys - многочисленный и meros - доля, часть] Высокомолекулярные химические соединения, состоящие из однородных повторяющихся групп атомов, широко применяемые в современной технике. Природные, синтетические п. Производство полимеров. Завод полимеров (разг.; завод по их производству).

◁ Полиме́рный, -ая, -ое. П-ые вещества, соединения. П-ые материалы.

(от поли... и греч. méros — доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. По происхождению полимеры делят на природные, или биополимеры (например, белки, нуклеиновые кислоты, натуральный каучук), и синтетические (например, полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвлённые и сетчатые полимеры, по природе — органические, элементоорганические, неорганические полимеры. Для линейных и разветвлённых полимеров характерен комплекс специфических свойств, например способность образовывать анизотропные волокна и плёнки, а также существовать в высокоэластичном состоянии. Полимеры — основа пластмасс, химических волокон, резины, лакокрасочных материалов, клеёв, ионитов. Из биополимеров построены клетки всех живых организмов. Термин «полимеры» введён Й. Я. Берцелиусом в 1833.

ПОЛИМЕ́РЫ (от поли... (см. ПОЛИ... (часть сложных слов)) и греч. meros — доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. По происхождению полимеры делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе — органические, элементоорганические, неорганические полимеры (см. НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ). Для линейных и разветвленных полимеров характерен комплекс специфических свойств, напр. способность образовывать анизотропные волокна и пленки, а также существовать в высокоэластичном состоянии. Полимеры — основа пластмасс, химических волокон, резины, лакокрасочных материалов, клеев, ионитов. Из биополимеров построены клетки всех живых организмов. Термин «полимеры введен Й. Я. Берцелиусом (см. БЕРЦЕЛИУС Йенс Якоб) в 1833.*** ПОЛИМЕ́РЫ (от греч. polymeros — состоящий из многих частей, многообразный), вещества, молекулы которых (см. Макромолекулы (см. МАКРОМОЛЕКУЛА)) состоят из большого числа структурно повторяющихся звеньев — мономеров (см. МОНОМЕР). Молекулярная масса полимеров достигает 106, а геометрические размеры молекул могут быть настолько велики, что растворы этих веществ по свойствам приближаются к коллоидным системам. Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей. По происхождению полимеры делятся на природные (биополимеры), например белки (см. БЕЛКИ (органические соединения)), нуклеиновые кислоты (см. НУКЛЕИНОВЫЕ КИСЛОТЫ), смолы природные (см. СМОЛЫ ПРИРОДНЫЕ) и синтетические (см. СМОЛЫ СИНТЕТИЧЕСКИЕ), например полиэтилен (см. ПОЛИЭТИЛЕН), полипропилен (см. ПОЛИПРОПИЛЕН), фенолоформальдегидные смолы (см. ФЕНОЛОФОРМАЛЬДЕГИДНЫЕ СМОЛЫ). Полимеризация и поликонденсация

Реакцию образования полимера из мономера называют полимеризацией (см. ПОЛИМЕРИЗАЦИЯ). В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

Полимеризация соединений с двойными связями, как правило, протекает по цепному механизму. Для начала цепной реакции необходимо, чтобы в исходной инертной массе зародились активные частицы. В цепных реакциях одна частица вовлекает в реакцию тысячи неактивных молекул, образующих длинную цепь. Первичными активными центрами являются свободные радикалы и ионы.

Радикалы — это части молекулы, образующиеся при разрыве электронной пары и содержащие неспаренный электрон (например, метил Ch4- , фенил C6H6-, этиловая группа C2H5- и т. д.). Образование первоначальных радикалов и ионов может происходить под действием теплоты, света, различных ионизирующих излучений, специально вводимых катализаторов (см. КАТАЛИЗАТОРЫ).

Помимо реакции полимеризации полимеры можно получить поликонденсацией (см. ПОЛИКОНДЕНСАЦИЯ) — реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ. Характеристики полимеров

Важнейшие характеристики полимеров — химический состав, молекулярная масса ММ и молекулярно-массовое распределение ММР, степень разветвленности и гибкости макромолекул, стереорегулярность (см. Стереорегулярные полимеры (см. СТЕРЕОРЕГУЛЯРНЫЕ ПОЛИМЕРЫ)) и др. Свойства полимеров существенно зависят от этих характеристик.

Количество химических звеньев в макромолекуле определяет ее протяженность и называется степенью полимеризации n. Например, молекула полиэтилена (-СН2-СН2-)n состоит из n химических звеньев этилена СН2=СН2. Произведение молекулярной массы М химического звена на степень полимеризации представляет собой молекулярную массу ММ макромолекулы. В зависимости от значений М и n молекулярная масса полимеров может изменяться в весьма широких пределах от 3.102 до 2.106 единиц. В зависимости от величины молекулярной массы макромолекул одного и того полимера условно различают: Мономер — низкомолекулярный исходный продукт;

Олигомеры (см. ОЛИГОМЕРЫ) — полимеры с ММ < 540, представляют собой низкомолекулярный продукт полимеризации или поликонденсации. Свойства олигомеров существенно зависят от молекулярной массы и, следовательно, от степени полимеризации.

Полимеры имеют молекулярную массу 5.103 < ММ < 5.105. К этой группе принадлежит абсолютное большинство разновидностей полимеров. Свойства полимеров от числа мономерных звеньев в цепи зависят значительно меньше, чем у олигомеров. Сверхвысокомолекулярные полимеры имеют ММ > 5.105. Молекулярный уровень характеризует химическое строение макромолекул, в целом определяемое химической природой мономерных звеньев и типами межмономерных связей.

В отличие от простых веществ полимер состоит из множества макромолекул, молекулярная масса которых различается. Поэтому полимеры характеризуются средним значением ММ. Т. е. полимер полимолекулярен. В связи с этим при описании физико-химических свойств полимеров значение их молекулярной массы дается в сравнительно широких пределах. Так, например, для полиэтилена низкой плотности приводятся значения (1,9—4,8).104. Молекулярно-массовое распределение (ММР) отражает неоднородность полимера по размерам цепей и, следовательно, по молекулярной массе составляющих его макромолекул. Чем ближе ММР к единице, тем однороднее по величине молекулы полимера.

Основные физические параметры полимеров (прочность, теплопроводность, дилатометрические характеристики, характеристические температуры) практически не зависят от молекулярной массы. Молекулярная масса полимеров влияет на реологические показатели их расплавов, на термодеформационные и ряд эксплуатационных свойств. Кроме того, она существенно зависит от способа получения полимеров, то есть от оборудования и технологии их синтеза.

По строению макромолекулы подразделяются на линейные, схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный (см. КАУЧУК НАТУРАЛЬНЫЙ)); разветвленные, имеющие боковые ответвления (например, амилопектин (см. АМИЛОПЕКТИН)); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы (см. ЭПОКСИДНЫЕ СМОЛЫ)). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям, способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул.

Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид (см. ПОЛИВИНИЛХЛОРИД), поликапроамид (см. ПОЛИКАПРОАМИД), целлюлоза (см. ЦЕЛЛЮЛОЗА (полисахарид)). Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами (см. СОПОЛИМЕРЫ). Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

Физическая организация макромолекул полимеров формирует важнейшие понятия, определяющие доминантные особенности полимеров, а именно термопластичность и термореактивностъ.

Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов (см. ТЕРМОПЛАСТЫ), а пространственные — класс термореактивных полимеров или реактопластов (см. РЕАКТОПЛАСТЫ).

Пространственная конфигурация

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными полимерами (см. СТЕРЕОРЕГУЛЯРНЫЕ ПОЛИМЕРЫ). В стереонерегулярных полимерах мономеры объединены в молекулярную цепь случайным образом. Такие полимеры называют также атактическими, и они являются аморфными полимерами (см. АМОРФНЫЕ ПОЛИМЕРЫ).

Топологическая структура — это тот уровень структурной организации, который характеризует связность мономерных элементов без учета конкретного химического содержания. При описании структуры полимеров используют понятия конфигурации и конформации (см. КОНФОРМАЦИИ МОЛЕКУЛЫ) макромолекулы. Конфигурация — это геометрическое расположение атомов, определяемое фиксированными химическими связями между соседними мономерными звеньями. Конформация представляет собой структуру, реализующуюся при вращении сегментов цепи или мономерных звеньев вокруг отдельных связей. Молекулярное строение, т. е. химический состав и способ соединения атомов в молекулу, однозначно не определяет поведение полимерного материала, построенного из макромолекул. Свойства зависят от их надмолекулярной структуры (см. НАДМОЛЕКУЛЯРНАЯ СТРУКТУРА) НМС, т.е. способа упаковки макромолекул в пространственно выделенных элементах, размера и формы таких элементов и их взаимного расположения в пространстве. Под надмолекулярной структурой понимают сложные агрегаты из большого числа макромолекул, образующиеся в результате действия межмолекулярных сил. Гибкие макромолекулы могут образовывать надмолекулярные микрообъемы с анизотропными свойствами, называемые кристаллитами. У макромолекул с малой подвижностью способность к формированию кристаллитов, как разновидности НМС, либо ограничена, либо полностью отсутствует. Структуры полимеров

Полимеры могут существовать в кристаллическом (см. Кристаллические полимеры (см. КРИСТАЛЛИЧЕСКИЕ ПОЛИМЕРЫ)) и аморфном состояниях. Кроме аморфного и кристаллического, известно также мезофазное промежуточное состояние полимеров. При взаимной упаковке цепных молекул в полимерных веществах молекулы стремятся располагаться параллельно друг другу. Большая длина молекул полимеров, возможность их спутывания, скручивания и т.п. затрудняют упорядочение и кристаллизацию полимерных веществ. Поэтому наряду с равновесными кристаллическими структурами в полимерных веществах наблюдаются разнообразные типы упорядоченности, называемые иногда паракристаллическими. Упорядоченность в этом случае ниже, чем в идеальных кристаллах, но выше, чем в жидкостях. В отличие от аморфных тел и жидкостей, полимеры, вследствие параллельности упаковки молекул, могут быть анизотропны и отличаются постоянной устойчивой анизотропией некоторых физических свойств.

Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекул. Способность полимеров к кристаллизации зависит от множества условий: температуры и скорости кристаллизации, термической предыстории, присутствию посторонних веществ. В зависимости от условий кристаллизации может быть получено множество морфологических форм кристаллических структур даже для одного и того же полимера.

В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл (см. ФИБРИЛЛЫ), сферолитов (см. СФЕРОЛИТ), монокристаллов (см. МОНОКРИСТАЛЛ) и др.), тип которых во многом определяет свойства полимерного материала. Разнообразие надмолекулярных структур в кристаллических полимерах обусловлено гибкостью и длинно-цепочным строением полимеров. Кристаллические или кристаллизующиеся полимеры содержат более 70% кристаллических НМС. Это, например, полиэтилен (см. ПОЛИЭТИЛЕН) высокой плотности, полипропилен (см. ПОЛИПРОПИЛЕН), фторопласт (см. ФТОРОПЛАСТЫ), некоторые виды полиамидов (см. ПОЛИАМИДЫ), полиформальдегид (см. ПОЛИФОРМАЛЬДЕГИД).

Полимеры с разветвленным строением макромолекул или с затрудненной подвижностью линейных макроцепей образуют аморфно-кристаллическую структуру. Например, полиэтилен низкой плотности, в главных цепях которого присутствуют многочисленные ответвления, может содержать до 70 % аморфной фазы. В аморфно-кристаллических полимерах содержание кристаллической фазы составляет 25—70 %. И кристаллические, и аморфно-кристаллические полимеры могут быть только термопластичными.

Надмолекулярные структуры в незакристаллизованных аморфных полимерах менее выражены, чем в кристаллических. В них кристаллическая НМС либо отсутствует полностью, либо ее содержание измеряется единицами процента. Аморфная надмолекулярная структура характерна для всех сетчатых полимеров, а также и для ряда широко распространенных термопластов. К ним относятся, например, полиметилметакрилат (см. ПОЛИМЕТИЛМЕТАКРИЛАТ) (оргстекло), поликарбонат (см. ПОЛИКАРБОНАТЫ), полистирол (см. ПОЛИСТИРОЛ).

Аморфные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами (см. ЭЛАСТОМЕРЫ), с высокой — пластиками. Характер перехода из одного состояния в другое зависит от химического строения полимера, его физической организации. Свойства полимеров В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20°С — эластичный материал, при температуре -60°С он переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20°С — твердый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100°С. Целлюлоза — полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235°С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80°С.

Применение полимеров

Благодаря механической прочности, эластичности, электроизоляционным и другим свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов — пластические массы, резины, волокна, лаки, краски, клеи, ионообменные смолы. В технике полимеры нашли широкое применение в качестве электроизоляционных и конструкционных материалов. Полимеры – хорошие электроизоляторы, широко используются в производстве разнообразных по конструкции и назначению электрических конденсаторов, проводов, кабелей, На основе полимеров получены материалы, обладающие полупроводниковыми и магнитными свойствами. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

dic.academic.ru

Полимеры

Полимеры – это высокомолекулярные химические соединения (ВМС), макромолекулы которых образованы из множества мономерных звеньев. Молекулы полимеров характеризуются огромной молекулярной массой, от нескольких тысяч до нескольких миллионов атомных единиц массы. Существует несколько вариантов классификации полимеров.

Термопласты и их сокращенные обозначения

Реактопласты и их сокращенные обозначения

Эластомеры и их сокращенные обозначения

Применение полимеров

Сложно переоценить значение полимеров с точки зрения их практического применения. В современном мире практически не найдется ни одной сферы жизни человека и общества, науки и бизнеса где не применялся бы хотя бы один вид полимеров.

Наиболее активное применение полимерные материалы получили в производстве автомобилей, машин и оборудования; в авиационной и аэрокосмической индустриях; в индустрии разработки и создания медицинских аппаратов и инвентаря. Остановимся на некоторых из направлений практического использования полимерных материалов более подробно.

Применение полимеров в автомобильной индустрии

Основная статья: Полимеры в автомобилестроении

Надежность работы современного автомобиля, долговечность и комфорт его эксплуатации, а также (что важно) безопасность передвижения могут быть обеспечены только при условии применения полимерных материалов — пластмасс, резин, лаков и красок и прочее.

Из пластмасс изготовляют кузова и кабины автомобилей и их отдельные крупногабаритные детали, разнообразные малогабаритные детали конструкционного и декоративного назначения, теплоизоляционные и звукоизоляционные детали и др.

К важнейшим и наиболее материалоемким резиновым изделиям для автомобилестроения относятся шины. Большое значение в этой отрасли промышленности имеют также многочисленные резино-технические изделия, от качества которых во многом зависит надежность работы автомобиля.

Лакокрасочные материалы применяемые для грунтования и окончательной отделки металлических поверхностей, должны образовывать покрытия, которые надежно защищают металл от коррозии (см. Защитные лакокрасочные покрытия), обладают высокой твердостью, эластичностью, ударопрочностью, термо- и износостойкостью.

Применение полимеров в авиастроении

Основная статья: Полимеры в авиастроении

Еще одним масштабным направлением практического применения широкой гаммы полимерных материалов является индустрия разработки, производства и эксплуатации летательных аппаратов.

Целесообразность применения полимеров в указанном направлении обусловлено их легкостью, вариабельностью состава и строения и следовательно, широким диапазоном технических свойств. Тенденция к расширению границ  применения полимерных материалов характерна также и для производства ракет и космических аппаратов.

Основные полимеры и сегменты использования:

Развернутую информацию на предмет использования полимеров по указанным сегментам в авиастроении вы найдете в основной статье, ссылка на которую указана в начале абзаца.

Применение полимеров в машиностроении

Основная статья: Применение полимеров в машиностроении

Пожалуй одним из ключевых направлений использования полимеров и материалов на их основе является машиностроение. Так например потребление пластических масс в этой отрасли уже становится соизмеримым (в единицах объема) с потреблением стали. Непрерывно, отмечают аналитики, возрастает также применение лакокрасочных материалов, синтетических волокон, клеев, резины и прощих веществ ии материалов на полимерной основе.

Целесообразность применения полимеров в машиностроении определяется, прежде всего, возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин: уменьшается масса, повышаются долговечность, надежность и прочие существенные свойства.

Применение полимеров в медицине

Основная статья: Полимеры в медицине

Благодаря широкой гамме свойств и физико-химических характеристик получаемых изделий полимеры и материалы на их основе получили огромное применение в медицине.

Применение полимерных материалов с целью изготовления изделий и техники медицинского назначения позволяет осуществлять серийный выпуск инструментов, предметов ухода за больными, специальной посуды и различных видов упаковок для лекарств, обладающих рядом преимуществ перед аналогичными изделиями из металлов и стекла: экономичностью, в ряде случаев — повышенной стойкостью к воздействию различных сред, возможностью выпуска изделий разового использования и прочее.

Особое внимание следует уделить вопросу применения полимерных материалов в фармакологии. Роль данной категории материалов в фармакологическом аспекте, пока относительно невелика. В лечебной практике их используют мало. К веществам, вводимым в организм, тем более к таким, которые должны в растворенном виде попасть в кровь, лимфу, межклеточные и клеточные полости и могут достигнуть любой части тела, любого его рецептора, предъявляются, естественно, очень жесткие требования.

Также отдельно следует остановиться и на вопросе практического использования полимерных материалов в таком медицинском сегменте, как – хирургия. Учитывая свойства получаемых изделий полимерные материалы получили активное применение сразу в нескольких сегментах современной хирургии:

В заключении отметим, что полимеры в медицинском аспекте применяются также в вопросе создания кровезаменителей и плазмозаменителей.

Применение полимеров в пищевой промышленности

Основная статья: Полимеры в пищевой промышленности

Пожалуй самым известным для массового потребителя является вопрос использования полимеров для нужд пищевой промышленности.

Следует отметить, что полимеры в пищевой промышленности  должны соответствовать комплексу определенных санитарно-гигиенических требований, обусловленных контактом этих материалов с продуктами питания. Обязательное условие применения полимерных материалов в пищевой промышленности — разрешение органов санитарного надзора, которое выдается на основании комплекса испытаний, включающих оценку органолептических свойств, а также санитарно-химическиеи токсикологические исследования полимеров и отдельных ингредиентов, входящих в состав композиционных материалов и изделий.

К числу наиболее крупных потребителей полимерных материалов в пищевой промышленности выступают “пищевое машиностроение” и производство тары и упаковки для хранения и транспортировки продуктов питания. При этом, в последнем случае, полимеры могут выступать и как основной материал (например, пластиковые бутылки), так и в качестве вспомогательных элементов и добавок, призванных (например) уберечь металлический контейнер от коррозии.

Применение полимеров в судостроении

Основная статья: Полимеры в судостроении

Благодаря использованию полимерных материалов значительно улучшаются технические и эксплуатационные характеристики судов, повышаются их надежность и долговечность, сокращается продолжительность и снижается трудоемкость постройки.

Современная судостроительная промышленность — один из крупнейших потребителей синтетических полимерных материалов, причем области их применения очень разнообразны, а перспективы использования практически неограниченны. Полимеры применяют для изготовления корпусов судов и корпусных конструкций, в производстве деталей судовых механизмов, приборов и аппаратуры, для окраски судов, отделки помещений и их тепло-, звуко- и виброизоляции, а также прочие полезные свойства.

Узнать больше о полимерах и полимерных материалах, прочитав свежие новости, изучив прочие материалы энциклопедии и библиотеки на портале MPlast.by вы можете на персональной странице темы – полимеры.

mplast.by

Полимерные материалы что это

Термин полимер, широко используется в наше время в производстве пластмасс и композитной промышленности, довольно часто слово «полимер» используют для обозначения пластиков. На самом деле, термин » полимер » означает намного-намного больше.

Специалисты компании ООО НПП «Симплекс» решили рассказать подробно, что же такое полимеры:Полимер – вещество с химическим составом молекул соединенных в длинные повторяющиеся цепочки. Благодаря этому все материалы, изготовленные из полимеров, обладают уникальными свойствами и могут быть адаптированы в зависимости от их назначения.

Полимеры бываю как искусственного, так и естественного происхождения. Самым распространенным полимером в природе является натуральный каучук, который является чрезвычайно полезным и используется человечеством уже несколько тысяч лет. Каучук (резина) обладает отличной эластичностью. Это результат того, что молекулярные цепи в молекуле чрезвычайно длинные. Абсолютно все виды полимеров обладают свойствами повышенной упругости, однако вместе с этими свойствами, могут демонстрировать и широкий спектр дополнительных полезных свойств. В зависимости от назначения, полимеры могут быть тонко синтезированы для максимально удобного и выгодного использования их определенных свойств.

Основные физические свойства полимеров:

Что такое полимеризация?

Полимеризация это метод создания синтетического полимера путем объединения многих малых молекул мономеров в цепи ковалентными связями. Существуют две основные формы полимеризации. Основное различие между двумя типами полимеризации в том, что в цепочке с ростом полимеризации мономера молекулы не будут добавлены в цепочку по одному. В случае пошагового роста полимеризации мономера молекулы могут связываться непосредственно друг с другом в любой последовательности. Разумеется процесс полимеризации не так прост, как описано выше. Он полон сложностей и связан с применением уникальных технологий. Однако в обзорной статье мы не станем углубляться во все эти тонкости. Более подробную информацию о полимеризации вы сможете посмотреть на странице: http://www.simplexnn.ru/?id=10138

Ученые химики давно заметили одну интересную особенность, связанную с полимерами: если посмотреть на полимерную цепь под микроскопом, то можно увидеть, что визуальная структура и физические свойства молекулы цепочки будет имитировать реальные физические свойства полимера.

Например, если полимерная цепь состоит из туго скрученных между нитей мономеров и их трудно разделить, то, скорее всего, этот полимер будет сильным и упругим. Или, если полимерная цепь на молекулярном уровне проявляет эластичность, скорее всего, и полимер будет иметь гибкие свойства.

Переработка полимеровБольшинство изделий из полимеров можно изменить и деформировать под воздействием высоких температур, однако на молекулярном уровне сам полимер может, не изменится и из него можно будет создать новое изделие. Например, можно расплавить пластиковую тару и бутылки и затем сделать из этих полимеров пластиковые контейнеры или детали автомобилей.

Примеры ПолимеровНиже приводится список самых распространенных полимеров, используемых в наше время, а также их основное применение:

Полимерная основа

Cтраница 1

Полимерная основа связующего обладает свойствами флуоресценции.

Полимерные материалы.

 [1]

Полимерная основа прижимается к растровому валику расположенным рядом с ним валиком, поверхность которого покрыта резиной. Для удаления излишка суспензии с поверхности растрового валика и повторного ее использования установлен специальный нож. Растр валика выполнен в виде треугольных линейных канавок, расположенных под углом 45 к образующей.

В зависимости от частоты и глубины линий растра меняется толщина слоя наносимой на основу суспензии.  [2]

Полимерная основа и люминесцентный краситель обычно объединяются в такую композицию, в которой наилучшим образом проявляются люминесцентные свойства. В зависимости от характера связи между функциональными группами основы и красителя полимерная основа более или менее прочно удерживает в своей среде краситель, уменьшая его вымываемость растворителями и снижая способность к миграции.

К недостаткам этих пигментов относится низкая светостойкость и плохая термостойкость.  [3]

Полимерная основа смеси: хорошо известно, что галогенированные полимеры часто значительно сильнее прилипают к металлическим поверхностям, чем обычные полимеры.  [4]

Полимерной основой нонообменников, содержащих ионогеиные группы — Nh3, — NHR, — NR R2 ( первичные или вторичные амины), являются стирол-дивинилбензольные, полиамин-эпихлоргидриииые и фенолформаль-дегидные матрицы.

По степени ионизации иоиогеииых групп ионообмеини-кн сравнимы с гидроксидом аммония.  [5]

Полимерной основой эластичных образцов, как правило, являются полимеры-эластомеры.  [6]

Полимерной основой данного материала, полученного методом холодного отверждения, служит смесь из 3 вес. В качестве порошкообразных наполнителей используются сульфат аммония, ацетат аммония, отвержденные феноль-ные и эпоксидные смолы, полиэтилен, тефлон и фенольные микросферы.

 [7]

Наиболее распространенной полимерной основой металлополимерных композиций является ПТФЭ. Без наполнителя ПТФЭ имеет низкий коэффициент трения, однако легко изнашивается и обладает ползучестью под нагрузкой.  [8]

Полимерной основой прозрачных твердых, полужестких образцов и пленок, как правило, являются термопласты. Воскообразные образцы обычно относятся к полиолефинам. В дисперсиях дисперсной фазой могут быть полиолефины, поливинил-ацетатные пластики, фторполимеры, а дисперсионной средой — органические растворители, вода или их смеси.

Газонаполненные полимеры, которые имеют промышленное значение, могут быть представлены эластичными и жесткими пенополиуретанами на основе простых и сложных полиэфиров, пенополиоле-финами, вспененными полистиролами, пенополивинилхлоридом, вспененными мочевино-формальдегидными смолами, пенополи-эпоксидами, пенофенопластами.

 [9]

В полимерной основе пенопласта ПСБ-С увеличивается число метальных группировок, свидетельствующих о появлении разветвлений в цепях макромолекул и кислородосодержащих группировок, но в меньшей степени ио сравнению с пенопластом ПСБ.

 [11]

В качестве полимерной основы в термостойких пресс-композициях КЭП ( эпоксикремнийорганический порошок) и ОСПМ использованы диановая, эпоксикремнийорганическая и эпокси-циануратная смолы.  [12]

Роль вязкости полимерной основы в формировании нелинейности диаграммы напряжение — деформация устанавливается при проведении испытаний с различными скоростями деформирования.

 [14]

Рассмотрена технология полимерной основы. Описан процесс изготовления магнитных порошков.  [15]

Страницы:      1    2    3    4

Полимерные материалы

Категория:

Промышленные материалы

Полимерные материалы

Далее: Резинотехнические изделия

Производство полимерных материалов — одна из важнейших отраслей химической промышленности, поскольку эта продукция используется во всех областях производства и быта.

Высокая экономическая эффективность применения полимерных материалов, универсальность их свойств, возможность получения из них изде-кий доступными и высокопроизводительными методами обусловили, особенно за последние 20 лет, неуклонный рост объема их производства. Производство пластических масс и синтетических смол в СССР возрастает примерно в два раза каждое пятилетие.

К полимерам относятся органические соединения, молекулы которых состоят из большого числа регулярно или нерегулярно повторяющихся звеньев одного или нескольких типов.

Полимеры бывают природными и синтетическими. К природным полимерам относятся натуральный каучук, целлюлоза, белки, природные смолы, к синтетическим — фенолоформальдегидные, кар-бамидные, эпоксидные смолы, полиэтилен, полистирол, поливинил-хлорид, полиамиды, поликарбонаты, сложные полиэфиры и др. Синтетические полимеры по типу синтеза делят на полимеризаци-онные (и сополимеризационные) и поликонденсационные.

Процесс полимеризации состоит в соединении однородных (или разнородных) мономеров с последующим образованием нового высокомолекулярного вещества.

При сополимеризации соединяются Два или более разнородных ненасыщенных мономера. Побочных продуктов при этих процессах не образуется.

При поликонденсации кроме образования нового высокомолекулярного вещества — полимера — выделяются побочные продукты (вода и др.). Поликонденсация процесс ступенчатый, а образующиеся на каждой стадии промежуточные продукты могут быть получены раздельно.

Синтетические смолы в зависимости от реакции их образована и от других факторов разделяются на полимеризационные и конденсационные, термопластичные, не претерпевающие, химических изменений под влиянием повышенной температуры, и термореак-тивные, претерпевающие такие изменения.

К термопластичным смолам относятся поливинилацетат, полистирол, поливинилхлорид,; продукты конденсации гликолей с двуосновными карбоновымн кислотами и др.

К термореактивным смолам относятся: фенолоформальдегидные, мочевиноформальдегидные и др.

Значение полимерных материалов непрерывно растет, в ряде случаев они конкурируют с металлами и сплавами, однако по надежности, долговечности и конструкционной прочности уступают им.

Отрицательным свойством полимерных материалов является способность к старению, снижению механических свойств при по-1 выщенных температурах, сопровождающаяся снижением физичес-1 ких свойств и изменением внешнего вида.

Наибольшее применение в технике получили следующие термореактивные смолы.

Фенолоформальдегидные и фенолофурфурольные — продукты поликонденсации фенолов с формальдегидом или соответственно фурфуролом. Применяют для конструкционных и неконструкционных пластмасс.

Термостойкость их до 300 °С.

Аминоформальдегидные (карбамидные) смолы — продукты поликонденсации аминов (мочевины, тиомочевины, меламина) с формальдегидом.

Применяют для электроизоляционных и декоративных пластмасс. Термостойкость их до 145°С.

Эпоксидные — продукты поликонденсации хлорированного глицерина и многоатомных фенолов. Применяют для высокопрочных конструкционных пластмасс.

Полиэфирные — продукты полимеризации или поликонденсации сложных эфиров некоторых двухосновных кислот, ангидридов и многоатомных спиртов.

Используют для высокопрочных конструкционных и электроизоляционных пластмасс, в том числе формующихся при низких давлениях. Термостойкость их до 300 °С.

Полисилоксановые связующие на основе кремнийорганических соединений используют для эластичных, химически- и термостойких (до 400 °С) электроизоляционных пластмасс.

Наибольшее применение получили следующие термопластичные смолы, которые используют для приготовления литьевых пластмасс и листовых или пленочных пластических материалов, не содержащих наполнителей.

Полиэтиленовые — продукты полимеризации этилена и его производных; используют для электроизоляционных и других пластмасс.

Поливинилхлоридные — продукты полимеризации хлорпроиз-водных этилена; используют для электроизоляционных, химически стойких, теплостойких и декоративных пластмасс.

Полиакриловые — продукты полимеризации акриловой и мета-криловой кислот и их производных; применяют для прозрачных пластмасс (оргстекло).

Полиамидные — продукты поликонденсации диаминов с некоторыми двухосновными кислотами или ступенчатой полимеризации лактанов аминокислот; используют для высокопрочных, термостойких и других пластмасс.

Полиуретановые — продукты взаимодействия некоторых органических соединений (диизоцианатов) с многоатомными спиртами; используют для высокопрочных, термостойких и других пластмасс.

Из числа производных природных полимеров получили применение эфиры целлюлозы.

Целлюлоза является природным высокомолекулярным соединением, в результате обработки которого кислотами образуются сложные эфиры целлюлозы — ксантогенат, нитроцеллюлоза и ацетилцеллюлоза.

Пластические массы (пластмассы). Пластмассы занимают особое место среди синтетических полимерных материалов. Некоторые из них обладают хорошей удельной прочностью, фрикционно-стью, прозрачностью, электроизоляционностью, тепло- и звукоизо-ляционностью, химической стойкостью.

Они представляют собой сложные композиции, состоящие из нескольких веществ. Их свойства зависят от вида и количества отдельных компонентов, входящих в их состав. Основным компонентом является связующее вещество (синтетическая смола, эфиры целлюлозы), придающее пластмассам пластичность и способность формоваться, а затем отвердевать, сохраняя полученную форму.

Имеются пластмассы, которые’ состоят только из связующего вещества (полиметил-метакрилат и др.).

Вторым компонентом пластмасс является наполнитель. Это вещества, повышающие механическую прочность, теплостойкость, электроизоляционность и другие свойства. В зависимости от структуры пластмассы наполнители бывают порошкообразными, волокнистыми и сложными.

В состав пластмасс вводят также пластификаторы, пигменты и другие добавки.

Общая характеристика пластмасс. По природе связующего вещества пластмассы бывают органического и неорганического происхождения в зависимости от пластической деформации при нагреве (по аналогии со смолами) — термопластичные (термопласты) и термореактивные (реактопласты).

По диэлектрическим свойствам пластмассы подразделяются на неполярные, или нейтральные, и полярные.

Пластмассы, состоящие из связующего вещества без наполнителя или с порошкообразным наполнителем, называют по роду смолы с добавлением окончания «пласт», например фенопласты, аминопласты и т.

п. Пластмассы со слоистыми и волокнистыми наполнителями, физико-механические свойства которых определяются свойствами наполнителя, называют по роду наполнителя, например текстолиты — с текстильным наполнителем, асболиты — с асбестовым картоном, стекловолокниты — с наполнителем из стеклянного волокна и т.

п. После смешивания смолы с наполнителями полученная масса легко перерабатывается в изделия.

По физико-механическим свойствам при обычной температуре пластмассы подразделяются на: – жесткие, обладающие, сравнительно высокой твердостью и упругостью, малым удлинением при разрыве, сохраняющие форму при внешних напряжениях в условиях обычных или повышенных температур; – полужесткие, с высоким относительным и остаточным удлинением при разрыве; – мягкие, отличающиеся повышенной мягкостью и эластичностью, высоким относительным и малым остаточным удлинением; – мягкие и эластичные с низким модулем упругости, хорошо деформирующиеся — пластиката (листы, ленты и др.).

Пластмассы выпускаются в виде порошков для прессования (пресс-порошок), масс для литья, листовых материалов для механической обработки, гнутья, штамповки, выдавливания, тонких (до 0,5 мм) листовых ненаполненных пленок.

Пластмассы с пористой и ячеистой структурой и объемной массой 0,03—0,3 г/см3 называют пенопластами, а свыше 0,3 г/см3 — поропластами.

В зависимости от назначения различают пластмассы конструкционные, фрикционные, антифрикционные, специальные, химически стойкие, электроизоляционные, прозрачные, тепло- и звукоизоляционные, уплотнительные (прокладочные) и декоративные.

Методы изготовления изделий из пластмасс и типы применяемого оборудования определяются типом пластмасс, используемых для изготовления изделий.

При производстве изделий из термореактивных пластмасс применяют прессование на гидравлических прессах, метод напыления, метод непрерывного формования; при производстве изделий из термопластических пластмасс применяют литье под давлением, экструзию (под экструзией понимают процесс непрерывного выдавливания расплавленной массы через оформляющую головку), вакуумное и пневматическое формование и др.

Физические свойства.

Плотность пластмасс составляет 15—2200 кг/м3 и выше, включая и пористые пластмассы-пороплас-ты. Наиболее легким является поропласт на основе аминоформаль-дегидной смолы, наиболее тяжелым — пресс-материал на основе фенолоформальдегидной смолы и наполнителя — свинца.

Температура плавления пластмасс зависит от типа и количества смолы и наполнителя и составляет 35—250 °С, что является их существенным недостатком.

Они обладают невысокой морозостойкостью. Некоторые из них выдерживают низкие температуры без разрушения при одновременном снижении прочностных свойств.

Изделия из полимерных материалов

Наиболее морозостойкими являются политетрафторэтилен и фтор-хлорпроизводные этилена (до — 100 °С), менее морозостоек поливи-Н” Пластмассы (кроме полиэтилена и полиизобутилена) масло- и бензостойки.

Недостатком пластмасс является малая поверхностная твердость (в 10—100 раз ниже твердости стали) и высокий коэффициент термического расширения (в несколько раз больше, чем у металлов и сплавов). Для снижения его в состав пластмасс вводят наполнители, которые одновременно повышают ползучесть, возрастающую даже при незначительном повышении температуры.

Механические свойства характеризуются пределом прочности при сжатии, растяжении, изгибе.

Наиболее высокий предел прочности при растяжении у поли-капролактама и полиуретана 5—8,5 МПа, у слоистых пластиков — 25-30 МПа, у однонаправленных стеклопластиков — до 70— 80 МПа.

Предел прочности при сжатии, как правило, в 2—4 раза больше, чем при растяжении. Древеснослоистые пластики имеют меньшую прочность при сжатии, чем при растяжении.

Предел прочности при статическом изгибе у большинства пластмасс примерно одинаков и составляет 4—8 МПа.

Диэлектрические свойства пластмасс зависят от наполнителей, смол и их полярности. Наилучшими диэлектриками являются полиэтилен, полистирол, полиизобутилен, политетрафторэтилен, полидихлорстирол и др.

Пластические массы, содержащие в своем составе графит и сажу, имеют пониженные электроизоляционные свойства.

Классификация- и области применения пластмасс. К фенопластам относятся: литые и слоистые фенопласты; фенопласты на основе жидкой резольной смолы и асбеста; фенопласты на основе смол резольного и новолачного типов; фенолиты; фенопласты на основе фенолоформальдегидных и фенолофурфу-рольных смол; волокнистые пресс-материалы; пресс-порошки.

Фенопласты применяются для изготовления различных изделий в машиностроении, электротехнике, радиотехнике, строительстве и товаров народного потребления.

Обладают работоспособностью в диапазоне температур от —60 до +200 °С, высокими механическими и диэлектрическими свойствами.

К аминопластам относятся: прессовочные материалы (порошки и волокнистые материалы); клеи горячего и холодного отверждения; слоистые пластики; пористые материалы.

Аминопласты применяются в различных отраслях народного хозяйства. Устойчивы к действию влаги и нагреванию до 90 °С, нетоксичны.

К термопластичным пластмассам относятся полистирол эмульсионный и блочный, винипласт, органические стекла, полиамиды, древесные слоистые пластики, пластмассы на основе эфира, целлюлозы и др.

Эмульсионный и блочный полистирол используется для изготовления деталей радиоаппаратуры, приборов, предметов домашнего обихода, для отделки помещений.

Обладает высокими диэлектрическими свойствами.

Винипласт используется в текстильной, нефтяной, угольной, металлургической, газовой, химической промышленности, в продовольственном машиностроении, станкостроении и сельском хозяйстве. Устойчив к действию влаги, кислот, щелочей, растворов солей, нефтяных углеводородов.

Органическое стекло (прозрачная пластмасса) применяется в основном в приборостроении, авто-, авиастроении и машиностроении.

Отличается небольшой плотностью по сравнению с традиционным стеклом и повышенной прочностью, малочувствительно к ударам, толчкам, не дает опасных осколков.

Полиамиды используются в качестве конструктивного материала в приборостроении, автомобильной и авиационной промышленности, для производства тканей, ковров, искусственного меха.

Отличаются высокой прочностью, износо- и теплостойкостью, устойчивостью к действию агрессивных жидкостей, кроме концентрированных неорганических кислот.

Древесные слоистые пластики используют для изготовления конструкционных, антифрикционных (шестерни, зубчатые колеса, подшипники), электроизоляционных материалов, для отделки мебели.

К пластмассам на основе эфиров целлюлозы относятся целлулоид, целлон и этролы.

Применяются они для изготовления технических изделий, часовых стекол, игрушек, товаров народного потребления. Целлулоид прозрачен, водостоек, хорошо формуется.

Широкое применение в качестве изоляционного и упаковочного материала имеют пленки на основе полимеров и сополимеров винипласта, этилена и пропилена, пленка на основе полистирола, фторопластов и полиэфиров.

Они обладают высокими электроизоляционными, антикоррозионными свойствами, эластичны, достаточно прочны.

Упаковка, маркировка, транспортирование и хранение синтетических смол и пластмасс

Синтетические смолы поставляются в жидком и твердом виде, а пластические массы — в виде порошков, гранул, листов, пластин, пленок и плит.

Синтетические смолы и пластмассы упаковывают в различную тару: барабаны стальные и фанерные, банки металлические, бочки деревянные и стальные, фляги, бутылки стеклянные, ящики деревянные, мешки бумажные непропитанные и битумированные, мешки полиэтиленовые, вагоны-цистерны магистральных железных дорог и цистерны для нефтепродуктов.

Допускается применение мешков из пластиката, из шпредиро-ванной ткани, из фторопласта и из ткани с пленкой.

Ящики, бочки, барабаны должны быть внутри выстланы бумагой, бумажные мешки заклеены или прошиты шпагатом, проволокой или завязаны.

Тара должна быть плотно закрыта: бутылки—

штертой или корковой пробкой, обернутой пергаментной бумагой; Пионы — крышкой с прокладкой из бензомаслостойкой резины или картона; металлические и деревянные бочки, барабаны, фляги, банки и фанерные барабаны — пробками и крышками.

Пленка винипластовая поставляется в ящиках, контейнерах и тугих видах упаковки, а перфорированная и перфорированно-гоф-пированная —в рулонах, упакованных в деревянные ящики или контейнеры; пленка поливинилхлоридная — в рулонах на бобинах стержнях или в пакетах, обернутых в упаковочную бумагу или пленку и упакованных в ящики, контейнеры или в шпредиро-ванные мешки; пленка полиэтиленовая — в рулонах на бобинах, обернутых в упаковочную бумагу, и упакованная в ящики или контейнеры в подвешенном состоянии.

Мешки проклеивают, металлические банки упаковывают в ящики— обрешетки (масса брутто не должна превышать 50 кг).

Стеклянные бутылки упаковывают в деревянные обрешетки или корзины, края которых должны быть выше пробки не менее чем на 20 мм. Корзины и обрешетки выкладывают мягким упаковочным материалом.

Заполнение тары (бочек, фляг, бидонов) жидким продуктом разрешается не более чем на 90%объема, в бутылях м,ежду уровнем жидкости и пробкой должен быть просвет не менее 5 см.

Маркируют синтетические смолы и пластмассы в соответствии с ГОСТами и техническими условиями на каждый вид продукции, как правило, путем нанесения (наклеивания) соответствующих знаков на тару.

Партия сопровождается документом, удостоверяющим соответствие ГОСТу или техническим условиям. При необходимости маркировка кроме общих положений должна содержать специальные предостерегающие надписи: «Верх», «Осторожно — стекло», «Не бросать», «Не ставить вертикально», «Огнеопасно». В каждый ящик, мешок, бочку, рулон при упаковке листовых и пленочных материалов вкладывается упаковочный лист с указа-•нием наименования, марки, номера партии, толщины (листов, плит, пленки и др.), количества, массы нетто и даты изготовления.

Транспортирование синтетических смол и пластических масс производится в крытых вагонах, автомашинах и в закрытых трюмах судов.

При перевозке необходимо защищать их от атмосферных осадков и солнечных лучей. При длительном транспортировании необходимо соблюдать температурный режим.

Так, при транспортировании винипластов при температуре менее 0 °С их нельзя бросать или подвергать ударам.

Хранят полимерные материалы и пластические массы в помещениях, разделенных несгораемыми перегородками на отдельные секции вместимостью до 200 м3 для легковоспламеняющихся и не более 1000 м3 для горючих материалов.

Общая вместимость помещения для хранения продуктов в таре не должна превышать 1200 м3 для легковоспламеняющихся веществ и 6000 м3 для горючих.

Допускается совместное хранение легковоспламеняющихся и горючих продуктов в таре в количестве до 200 м3 в одной секции при общей емкости склада не более 1200 м3.

Помещения для хранения синтетических смол и пластических масс должны быть сухими, с хорошей вентиляцией, с температурой около 25°С и относительной влажностью воздуха 60—80%.

Конкретные режимы и предельные сроки хранения рекомендуются отдельно для различных видов смол и пластмасс: «Руководством по транспортированию, приемке и хранению химических материалов на базах и складах системы Госснаба СССР». В связи с особенностями синтетических смол и пластмасс, которые в большинстве являются легкогорючими, а иногда выделяют при хранении летучие растворители и обладают токсическими свойствами, а некоторые из них при горении выделяют опасные для организма вещества — угарный газ, акролейн, хлористый водород, синильную кислоту — установлены также требования к конструкциям стеллажей, расположению и ярусности штабелей, вентиляции и т.

п.

Читать далее:

Резинотехнические изделия

Статьи по теме:

Реклама:

Главная → Справочник → Статьи → Блог → Форум

Главная / Технологии / Производство полимеров

Производство полимеров

Производство и переработка полимеров

Производство полимероа

Изделия из пластика давно стали неотъемлемой частью нашей повседневной жизни. Именно поэтомупроизводство полимеров – это перспективная и стремительно развивающаяся отрасль промышленности.

Полимеры – это вещества, состоящие из больших макромолекул, которые соединяются из элементарных звеньев, или мономеров. Благодаря своим свойствам, полимерные материалы обрели такую популярность на сегодняшнем рынке. Производство изделий из полимеров насчитывает множество различных направлений, так как эти изделия с успехом используются практически во всех сферах нашей жизни, начиная от автомобильных запчастей и заканчивая обычной пищевой плёнкой.

А производство полимеров в России особенно актуально, ведь наша страна богата на природные ресурсы, тогда как основным сырьём, применяемым в производстве полимеров, является нефть, а вспомогательным – природный газ.

Технология производства полимеров

Полимеры, используемые в промышленности, можно разделить на три группы.

Природные полимеры, такие как каучук, целюллоза или казеиновый клей, не получили широкого распространения и мало используются. Химически обработанные природные полимеры – переработанные – используются немного больше, но всё равно не играют в современной промышленности значительной роли. Наиболее распространены сегодня в промышленности синтетические полимеры, их получают, объединяя мономеры в макромолекулы. Технология производства полимеров из мономеров включает в себя два основных способа: поликонденсация и полимеризация.

В первом случае между двумя молекулами мономера образуется связь при отрывании от них небольшой молекулы другого вещества, например, аммиака, воды или хлористого водорода. Во втором же случае в мономерах разрываются двойные связи, что приводит к образованию полимерной цепи с межмономерными связями.

Завод по производству полимеров комплекса предприятий ООО «Пластик» обладает огромным научным потенциалом и современным оборудованием. При этом, технологическая база постоянно обновляется, поэтому полимеры, произведённые нами, и изделия из них отличаются высшим качеством, а ассортимент стремительно растёт.

Переработка полимеров

Не менее важным и остро стоящим является вопрос экологичности изделий из полимеров.

Срок разложения обычной пластиковой бутылки или пищевой плёнки превышает стони лет. Именно поэтому так важна переработка полимеров. Производство изделий из пластикового вторичного сырья – один из вариантов решения данной проблемы, однако этот процесс сопряжён со значительным количеством трудностей.

Главной загвоздкой становится то, что изделия, при производстве которых используется переработанный полимерный материал, получаются гораздо более низкого качества. Полимерные отходы значительно уступают исходным полимерам в их механических свойствах.

Виды полимерных материалов

Более того, по сравнению с исходными полимерами, изменяются параметры технологического процесса получения полимерной массы для производства изделий из вторичного сырья, потому что такое сырьё достаточно сильно отличается от исходного: изменяется вязкость, прочность, материал может содержать неполимерные включения.

Однако, не смотря на все трудности, тенденция к производству из вторичных полимеров новых изделий постепенно развивается. Например, всё чаще каскадную переработку применяют к производству пластиковых бутылок, так как это не сказывается на их качестве.

Ещё одним вариантом решения проблемы экологичности является производство биоразлагаемых полимеров. На сегодня наибольшей популярностью среди таких пластмасс пользуется полилактид (PLA), так как он изготавливается из органических материалов.

Также ведутся исследования в области придания способности к биоразложению другим широко распространённым в промышленности видам пластика, таким как полистирол, поливинилхлорид, полипропилен и другие.

Одним из вариантов реализации этой задачи является добавление в полимерную массу органического концентрата, что не особенно сказывается на качестве получаемого изделия, но значительно сокращает срок его разложения.

скачать

Полимерные материалы включают:

Основой всех этих материалов является полимер.

полиэтилен (PE) [Ch3-Ch3-] n представляет собой мономерную единицу

n — указывает, сколько мономерных молекул (этиленовый газ) входит в реакцию полимеризации.

NСинтезировать [-A-] n-полимеры — полимеризацию — полинемию.

целлофан — для парфюмерии, непродовольственных товаров (нитроцеллюлоза), ящиков для сладостей.

ПОЛИМЕРНЫЕ МАТЕРИАЛЫ

Клей, непроницаемый. Толщина пленки не превышает 0,5 мм. Lovsan — основной выбор упаковки для напитков (полиэтилентерефталат) (PE), (ПЭТ), (ПЭТ). (1). Поливинилхлорид — (ПВХ) (3) (ПВХ, VC; C) [-Ch3-Ch3-] n

Cl

полистирол — (PS-PS) (6) — для упаковки сметаны, йогурта, ферментированных молочных продуктов.

Особенности пластика:

недостатки:

Основной состав пластикаОсновным ингредиентом является полимер, который является связующим и определяет будущие свойства продуктов.

Работа в твердом состоянии.

Обработано в очень упругом-жидком состоянии.

При нагревании он переходит в жидкое состояние — термопластичный, нагревается при охлаждении (обратимый пластик) и только рециркулирует.

Reaktoplastika — Пластмассы, которые нагреваются, характеризуются и разлагаются.

Они существуют в повседневной жизни fenoplasts (черный, коричневатый), амилопласт (Цвет). Введите точно так же:

Цвета — красители и пигменты используются с темноцветными пигментами.

Красители растворяются, пигменты не растворяются.

Пигменты представляют собой мелкодисперсные порошки. Натуральный (охра, мел) и синтетический (ультрамарин, белый). Соли и оксиды металлов. Цветная классификация (пигменты):

Если неравномерно распределяется (диспиргируется), то неравномерная окраска, точечные включения.

Необходимо рационализировать в составе пластмасс, определенных в рабочей области, или в смесительных мешалках.

наполнители Это вещества, которые повышают прочные свойства пластмасс, уменьшают деформацию изгиба и сжатия пластмасс.

Твердые наполнители чаще всего вводятся (порошки, волокна, листы). Пластмассовые изделия не входят в состав бытовых изделий.

порошки: мел, тальк и т. д.

волокна: бумага, дробленый, хлопчатобумажные расчески, стекловолокно, асбестовые волокна, углеводородные волокна.

Список: листовая бумага, цилиндрическая ткань, шпон. пластификаторы — увеличивая пластические свойства, ингредиенты, которые увеличивают пластичность пластмасс.

Используйте жидкий, твердый (колофон — редко).

Органические вещества: диоктилфталат, дибутилфталат, дибутилсебакат.

Линолеум — ПВХ. В процессе хранения имеются примеры ламинирования — миграция (миграция на поверхность) липкость, падение влаги.

Фталаты — фиксаторы, токсичные для человеческого организма.

стабилизаторы — вещество, которое защищает пластмассы от воздействия факторов окружающей среды, увеличивает сопротивление.

Они делятся на коэффициент защиты:

антиоксиданты — защита от воздушных эффектов;

Termostabilizatorji — от высоких температур;

антиозонанты — из озона;

Antiradovi — от излучения;

фотостабилизаторы — от ультрафиолетового излучения;

Огнезащитные материалы — вещества, которые уменьшают поведение горения полимерного металла;

Распространители Это вещества, используемые для формирования пористой структуры;

смазочные материалы — смазочные вещества, т.е. вещества, которые вводятся в композиции для уменьшения адгезии продукта до металлической формы;

отвердители — ускорить отверждение инъецированных реактопластов.

Из пористого изолята: полистирол, поропласт, пенополистирол.

P.orometals — в структуре представлены открытые поры в виде капилляров, которые проходят через весь металл и на поверхность:

Nометаллы> 0,3%;

Nенометаллы 0,03-0,3;

Nполиуретан.

Общая схема производства пластмассовых изделий.

методы: штампование, прессование, герметизация (плоская или емкостная), экструзия выдувного формования, вакуумное формование (горшки для йогурта и сметаны), горячее прессование, горячее тиснение.

Бутылки выдавливаются с помощью инфляции (в нижней части шва).

ПВХ — метод каландрирования.

скачать

См. Также:Полимерные материалы включаютОборудование для бескаркасных конструкций «Радуга-МБС»Методологическая помощь в управлении региональным и национально-региональным компонентом содержания музыкального образования в учебных заведениях Республики Молдова на основе материалов раздела «Музыкальное искусство»,

Индекс публикаций (по материалам выставки за год учителя) Shuya 2010 bbk 91.

9: 74Содержание ВведениеУрок географии 6-й класс Суховеева Т.В., преподаватель географии, Гбоу №324Локализация мотивов в декорациях на основе этнографических и археологических исследованийЭкспертное заключение №.«Есть ли свобода слова в России?» (Согласно толстым литературным журналам «Новый мир», «Наш современник»,Телевизор и детиПервое упоминание о школе относится к 1887 году

Пояснение к экзаменам для устного экзамена по биологии в 9 классе (по билетам)

Биополимеры лежат в основе живых организмов и задействованы почти во всех процессах жизнедеятельности.

Широко распространено 12 марок полимеров.

Наиболее активно используется полиэтилен.

Основные виды полимерных материалов в строительстве

Он относится к синтетическим термопластичным неполярным полимерам класса полиолефинов. Его получают полимеризацией этилена.

Еще один термопластичный неполярный, получивший обширное применение полимер – полипропилен. Это синтетическое вещество класса полиолефинов, получаемое в результате полимеризации пропилена. Как и полиэтилен, полипропилен – белое твердое вещество.

Путем поликонденсации терефталевой кислоты и моноэтиленгликоля получают синтетический термопластичный линейный полимер класса полиэфиров – полиэтилентерефталат.

Широкое применение получил и полистирол.

Он представляет из себя жесткий синтетический термопластичный аморфный полимер и является продуктом полимеризации стирола.

Еще один линейный термопластичный полимер, незаменимый в быту и промышленности – поливинилхлорид. Это полимер винилхлорида _СН2_СНСl_.

Поливинилхлорид – это пластик белого цвета с молекулярной массой 6000 – 160.000, степенью кристалличности 10 – 35%, плотностью 1.35 – 1.43 г/см3.

Это физиологически безвредное вещество.

АБС пластик получил свое название по начальным буквам названий мономеров: акрилонитрила, бутадиена, стирола. Является термопластичным аморфным тройным сополимером.

Активно применяются также синтетические гетероцепные полимеры, полиуретаны.

В состав основных цепей этих полимеров входят макромолекулы уретановой группировки _NH_CO_O_.

Еще один вид синтетических термопластичных полимеров класса фторолефинов – фторопласт.

В состав фторопласта входят атомы фтора, характеризующиеся высокими показателями химической стойкости

Пенопласт – вспененная или ячеистая пластмасса.

Этот полимер наполнен газом и представляет из себя композиционные материалы с матрицей из полимерных пленок. Полимерные пленки образуют ребра и стенки пор, наполненных газом.

Фенопласт относится к термореактивным пластмассам, в основе которых лежат фенолоальдегидные смолы (в частности, фенолоформальдегидные) и включают в себя разнообразные наполнители, отвердители и некоторые другие добавки.

Полиамиды – представители многочисленной группы гетероцепных высокомолекулярных соединений.

Химические звенья полиамидов соединяются амидной связью _NH_CO_.

Нашли свое широкое применение и поликарбонаты, полиэфиры диоксисоединений и угольной кислоты.

stroitel12.ru


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.