Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Параллакс что это такое


Параллакс - это... Что такое Параллакс?

Схема параллакса

Паралла́кс (греч. παραλλάξ, от παραλλαγή, «смена, чередование») — изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя.

Зная расстояние между точками наблюдения D (база) и угол смещения α в радианах, можно определить расстояние до объекта:

Для малых углов:

Измерение расстояния при помощи параллакса

Параллакс используется в геодезии и астрономии для измерения расстояния до удалённых объектов (в частности в специальных единицах — парсеках). На явлении параллакса основано бинокулярное зрение.

Отражение фонаря в воде значительно сдвинуто относительно практически не сместившегося солнца

Суточный параллакс (геоцентрический параллакс) — разница в направлениях на одно и то же светило из центра масс Земли (геоцентрическое направление) и из заданной точки на поверхности Земли (топоцентрическое направление).

Из-за вращения Земли вокруг своей оси положение наблюдателя циклически изменяется. Для наблюдателя, находящегося на экваторе, база параллакса равна радиусу Земли и составляет 6371 км.

При наблюдении Луны её кажущиеся смещения на фоне звёзд (по сравнению с расчётным орбитальным движением) достигают 2° (соответственно, параллакс равен 1°) и были замечены уже древнегреческими астрономами, что позволило им довольно точно определить расстояние до Луны.

Суточный параллакс планет довольно мал (для Марса 24″ во время великого противостояния), но тем не менее был единственным способом измерения абсолютных расстояний в Солнечной системе до появления радиолокации: наиболее удобными для этого были прохождения Венеры по диску Солнца и близко подходящие к Земле астероиды (относительные же расстояния легко определяются на основе законов Кеплера, так что достаточно абсолютного измерения какого-то одного расстояния, чтобы определить все).

Годичный параллакс

Годичный параллакс — угол, под которым со звезды видна большая полуось земной орбиты, перпендикулярная направлению на звезду.

Годичные параллаксы являются показателями расстояний до звёзд. Расстояние, годичный параллакс которого равен 1 угловой секунде, называется парсек (1 парсек = 3,085678·1016 м). Ближайшая звезда Проксима Центавра имеет параллакс 0,77″, следовательно, расстояние до неё составляет 1,298 пк.

Вековой параллакс

Основная статья: Собственное движение

Вековым параллаксом обычно называется изменение видимого положения объекта на небесной сфере в результате комбинаций собственных движений этого объекта и Солнечной системы в галактике.

Параллакс в фотографии

Параллакс видоискателя

Основная статья: Видоискатель#Параллаксные

Параллакс видоискателя — несовпадение изображения, видимого в оптическом незеркальном видоискателе, с изображением, получаемым на фотографии. Параллакс почти незаметен, когда фотографируют удалённые объекты, и весьма значителен при съёмке близко расположенных объектов. Он возникает из-за наличия расстояния (базиса) между оптическими осями объектива и видоискателя. Величина параллакса определяется по формуле:

,

где  — расстояние (базис) между оптическими осями объектива и видоискателя;  — фокусное расстояние объектива фотоаппарата;  — расстояние до плоскости наводки (объекта съемки).

Параллакс видоискателя (прицел)

Частным случаем является параллакс прицела. Параллакс — это не высота оси прицела над осью ствола, а погрешность расстояния между стрелком и целью.

Оптический параллакс

Параллакс дальномера

Параллакс дальномера — угол, под которым виден объект во время наводки на резкость с помощью оптического дальномера.

Стереоскопический параллакс

Стереоскопический параллакс — это угол, под которым рассматривают объект двумя глазами или когда его фотографируют стереоскопическим фотоаппаратом.

Временно́й параллакс

Временной параллакс — искажение формы объекта параллаксом, возникающим при съёмке фотоаппаратом со шторным затвором. Так как экспозиция происходит не единовременно по всей площади светочувствительного элемента, а последовательно по мере движения щели, то при съёмке быстро движущихся объектов их форма может искажаться. Например, если объект движется в ту же сторону, что и щель затвора, его изображение будет растянуто, а если в обратную, то сужено.

История

Галилео Галилей предположил, что если бы Земля вращалась вокруг Солнца, то это можно было бы заметить по непостоянству параллакса для удалённых звёзд.

Первые успешные попытки наблюдения годичного параллакса звёзд были выполнены В. Я. Струве для звезды Вега (α Лиры), результаты опубликованы в 1837 году. Однако, научно достоверные измерения годичного параллакса были впервые проведены Ф. В. Бесселем в 1838 году для звезды 61 Лебедя. Приоритет открытия годичного параллакса звёзд признается за Бесселем.

См. также

Литература

Ссылки

Параллакс

Планета Земля не является стационарным объектом в космическом пространстве, а совершает один оборот вокруг своей оси каждые 24 часа (земные сутки), а так же обращается вокруг Солнца за 365 земных суток (один земной год).

Краткие сведения

Радиус земной орбиты составляет одну астрономическую единицу или около 150 миллионов километров. В связи с этим все внеземные объекты на земном небе так же выписывают годичные “петли” (параллактическое движение). Чем дальше небесный объект находится от Земли, тем его параллактическое движение на земном небе является менее заметным (в переводе с греческого слово “параллакс” означает “смещение”).

Измерения углового диаметра параллактического движения небесных тел на земном небе позволяет проводить наиболее точные измерения расстояния до них (тригонометрическое расстояние). Кроме того, важным в истории астрономии оказался суточный (геоцентрический) и вековой параллакс. Первый из них обозначает половину от максимального различия в угловых координатах небесного тела на земном небе при различных географических положениях на поверхности Земли (относительно центра Земли), второй обозначает собственные движения звезд на небе нашей планеты по причине движения Солнечной Системы вокруг центра галактики.

История

Суточным (геоцентрическим) параллаксом называется угол, под которым виден земной радиус с определенного небесного тела. Кроме того, выделяют понятие горизонтального параллакса. Горизонтальным параллаксом называется угол, под которым виден экваториальный радиус Земли из центра определенного небесного тела при нахождении последнего на истинном горизонте (истинный горизонт — мысленно воображаемый большой круг небесной сферы, плоскость которого перпендикулярна отвесной линии в точке наблюдения). Различия понятий суточного и горизонтального параллакса связаны с несферичностью Земли (так полярный радиус Земли короче экваториального радиуса на 21 км).

Суточный параллакс сыграл очень важную роль в истории астрономии, как наиболее простой и достоверный способ определения расстояния до объектов Солнечной Системы. Фактически этот метод являлся единственным геометрическим методом измерения расстояний в Солнечной Системе вплоть до радиолокации, лазерной локации и методов радиоинтерференции сигналов межпланетных станций. Базой суточного параллакса является земной радиус. Самым большим суточный параллакс является у Луны (57 угловых минут) и у Солнца (9 угловых минут). У всех планет Солнечной Системы суточный параллакс подвержен регулярным изменениям и значительно меньше угловой минуты (у Венеры  0.1-0.6 угловых минут, у Марса 0.1-0.4 угловых минут, у Юпитера и Сатурна меньше 0.1 угловой минуты, а у Урана и Нептуна меньше одной угловой секунды).

Первыми параллакс Луны и Солнца определили древнегреческие астрономы на основе наблюдений лунных затмений, которые позволяли определять параллакс Луны из одного и того же места. Так древнегреческий астроном Гиппарх Никейский (180-125 годы до нашей эры) в 129 году до нашей эры оценил параллакс Солнца в 7 угловых минут (максимальная величина угла, который неразличим невооруженным глазом). Похожие расчеты выполнил до него другой древнегреческий астроном Аристарх Самосский (310-230 годы до нашей эры).

С другой стороны, александрийский астроном Клавдий Птолемей (100-170 годы нашей эры) полагал, что расстояние до Луны зависит от её фаз. Это говорит о больших разногласиях среди астрономов Древнего мира по поводу оценок параллаксов Луны и Солнца. Позже ошибка Птолемея о зависимости размера параллакса Луны от её фаз стала одним из основных объектом критики птолемевской системы мира. Так юный Николай Коперник (1473-1543 годы нашей эры) во время учебы в Италии проводил измерения параллакса Луны вместе со своим учителем Новарой. Наблюдения положения Луны во время затмения яркой звезды Альдебаран из Болоньи 9 марта 1497 года показали, что параллакс Луны не зависит от её фазы. В последующие века началось широкое использование одновременных наблюдений из северного и южного полушария для точного измерения параллаксов Луны, Солнца и Марса. К примеру, в 18 веке такие наблюдения осуществлялись в обсерватории мыса Доброй Надежды в южной части Африки и Берлинской обсерватории.

Сравнение гелиоцентрической и геоцентрической системы мира

Сравнение гелиоцентрической и геоцентрической системы мира

Годичный параллакс (звездный параллакс) даже у ближайших звезд не превышает одной угловой секунды. В связи с этим его измерение стало возможным лишь после изобретения оптических инструментов – телескопов. Сама возможность существования этого явления стала причиной принципиальных разногласий между геоцентрической и гелиоцентрической системами мира – геоцентрическая система считала, что Солнце обращается вокруг Земли. В то же время сторонники гелиоцентрической системы в течение почти 2 тысяч лет объясняли ненаблюдаемость звездных параллаксов огромными расстояниями до звезд. Первые попытки измерения звездных параллаксов были предприняты древнегреческим астрономом Аристархом Самосским в 3-ем веке нашей эры (считается, что он первым выдвинул предположения о гелиоцентрической системе мира). Позже такие попытки были предприняты Н. Коперником, Т. Браге, Г. Галилео, У. Гершелем и т.д. Последний во время попыток обнаружения звездных параллаксов случайно открыл неизвестную планету Солнечной Системы – Уран.  По иронии судьбы, к тому времени, когда в начале 19 века всё же удалось измерить первые параллаксы звезды, сомнений в справедливости гелиоцентрической системы мира уже не оставалось. Так в ходе безуспешных попыток измерить параллакс у звезды Гамма Дракона (Этамин) английский астроном Джеймс Бредли (1692-1762 годы) в 1727 году открыл явление аберрации света, которая вызвана орбитальным движением Земли вокруг Солнца. Аберрация света представляет собой изменение видимого положения звезд примерно на 50 угловых секунд по причине конечной скорости света (первооткрыватель годичной аберрация определил скорость света в 308 тысяч км в секунду). Одновременно Д.Бредли получил верхний предел для звездных параллаксов в 0.5 угловой секунды. С другой стороны в попытках измерить звездные параллаксы, другому английскому астроному Уильяму Гершелю (1738-1822 году) в 1803 году удалось впервые зарегистрировать орбитальное движение двойных звезд (ранее предполагалось, что визуальные двойные звезды являются результатом случайности). Кроме того У. Гершель первым определил на основе наблюдаемых собственных движений звезд, что Солнечная Система движется в сторону созвездия Геркулеса.

Впервые факт отсутствия неизменности положения звезд на земном небе был обнаружен ещё Гиппархом на основе сверки положения ярких звезд его каталога, состоящего из примерно тысячи звезд с более древними каталогами вавилонян и александрийских астрономов. Гиппарх обнаружил систематическое изменение долготы положения звезд примерно на один градус (в то время как широта звезд относительно эклиптики оставалась неизвестной). Ныне это явление называется прецессией земной оси с периодом в 26 тысяч лет. Истинное движение звезд было впервые обнаружено в 1718 году английским астрономом Эдмондом Галлеем (1656-1743). В процессе уточнения прецессии Э. Галилей сравнил положения звезд из каталога Гиппарха с современными звездными каталогами. Сравнение показало, что на фоне большинства звезд, у которых положение на земном небе менялось согласно прецессии, встречался ряд аномалий (для Сириуса, Арктура и Альдебарана). У этих звезд отклонения в положении в несколько раз превысили погрешность измерений.

Василий Струве и Пулковская обсерватория в которой он работал

Василий Струве

Первые достоверные измерения звездных параллаксов были опубликованы в 1837-1838 годах сразу тремя исследователями: Василий Струве (1793-1864 годы) для Веги, Фридрихом Бесселем (1784-1846 годы) для 61 Лебедя и Томасом Хендерсоном (1798-1844 годы) для Альфы Центавра. Хотя за много лет до этого – к 1822 году Фридрих Струве в Дерптской обсерватории на территории нынешней Эстонии получил достаточно точные измерения параллаксов нескольких ярких звезд (к примеру, для Альтаира).

Орбитальное движение звезд системы 61 Лебедя (черным отметками отмечены измерения астрономов)

Кроме того французский астроном Доминик Араго (1786-1853) ещё за несколько лет до Ф. Бесселя опубликовал значение параллакса 61 Лебедя с большой погрешностью. Результат Ф. Бесселя был воспринят мировым сообществом как наиболее достоверный в связи с большим количеством астрометрических измерений (более 400).

Для сравнения у Ф. Струве для Веги было сделано только 17 астрометрических измерений. Кроме того работу Бесселя облегчил факт того, что двойная система 61 Лебедя обладает заметным орбитальным движением. Так можно было сравнить параллакс для обеих звезд системы.

Визуальные измерения параллаксов и собственных движений являлись крайне трудоемкими. К концу 19 века удалось измерить тригонометрические расстояния лишь до сотни звезд. Всё резко изменилось с использованием фотографии. Точность измерений выросла до 10 угловых микросекунд, а число измеряемых звезд достигло нескольких тысяч. Замена фотопластинок приборами с зарядовой связью (ПЗС-матрицами), широкое использование компьютеров для обработки данных, а также вынос телескопов за пределы атмосферы Земли позволил улучшить точность измерения положения звезд до миллионных долей угловой секунды, а размер астрометрических каталогов вырос до девятизначных цифр.

Прогресс в точности измерения положения звезд за последние 2.5 тысячи лет

Основы геометрии и тригонометрии

При вычислении лунного параллакса активно используются основы геометрии для прямоугольного треугольника. Прямоугольным треугольником называется такой треугольник, у которого один из углов равен 90 градусов.

В прямоугольном треугольнике стороны, которые образуют угол в 90 градусов, называются катетами, а сторона, лежащая напротив угла в 90 градусов гипотенузой. Сумма углов в прямоугольном треугольнике равна 180 градусов. Отсюда несложно определить, что при известном катете (радиусе Земли) и угле между гипотенузой и катетом (суточным параллаксом) гипотенуза (расстояние до небесного тела) будет равна отношению известного катета к синусу суточного параллакса.

Только в этом случае радиус Земли заменяется радиусом земной орбиты вокруг Солнца, а суточный параллакс заменяется годичным параллаксом

Синусом в прямоугольном треугольнике называют отношение катета противолежащего угла к гипотенузе.

Аналогичный принцип вычислений существует для расчетов тригонометрических расстояний до звезд.

По причине огромных расстояний до звезд (ближайшая звезда находится в 270 тысячах астрономических единиц от Солнца), для вычисления тригонометрических расстояний чаще всего используют отношение 206265 угловых секунд и измеренного годичного параллакса, который так же представлен в угловых секундах. Число 206265 означает число угловых секунд в одном радиане. Радиан – это угол, соответствующий дуге окружности, длина которой равна радиусу этой окружности.

Частные случаи использования суточного и годичного параллакса

Многие тысячи лет число известных объектов в Солнечной Системе было постоянным и было равно девяти (Земля, Луна, Солнце, Меркурий, Венера, Земля, Марс, Юпитер и Сатурн). Это постоянство нарушали лишь кометы, которые периодически появлялись во внутренних областях Солнечной Системы. В 18 веке в Солнечной Системе начались открытия новых планет и астероидов (к примеру, Урана и Цереры). Шквал новых открытий вынудил астрономов разрабатывать методики по вычислению орбит небесных тел Солнечной Системы по минимальному числу измерений. В 1801 году 24-летний немецкий математик Фридрих Гаусс (1777-1855 годы) с целью обнаружения потерянной Цереры разработал математический метод, по которому было возможно определить орбиту небесного тела на основе всего трех его наблюдений.

В то же время примерное расстояние до небесного тела  в Солнечной Системе, возможно, определить лишь по двум наблюдениям. Особенно, это актуально в случае открываемых объектов за орбитой Нептуна (ТНО). У таких объектов скорость движения является минимальной по сравнению с орбитальной скоростью Земли (несколько сотен метров в секунду против 30 км в секунду). В результате этого наблюдаемое расстояние от Солнца (гелиоцентрическое расстояние) до ТНО в астрономических единицах можно определить простым соотношением 150/q, где q – это угловая скорость объекта в угловых секундах за один час.

С другой стороны в последние годы астрометрические наблюдения мигрируют из оптического диапазона в более длинноволновые диапазоны электромагнитного спектра: инфракрасные лучи и радиоволны. Первый диапазон является очень перспективным для астрометрии красных и коричневых карликов во Вселенной (наиболее распространенной популяции массивных объектов в галактике, чей максимум теплового излучения приходится на инфракрасный диапазон). Второй диапазон является уникальным во всем электромагнитном спектре по проникающей способности.

Так недавно радиоастрономы с помощью радиоинтерферометра VLBA смогли установить рекорд самого далекого измеренного параллакса: расстояние до межзвездного облака G007.47+00.05 (внешний рукав Щита – Центавра) составило 20 тысяч парсек или 67 тысяч световых лет

Вековой и внегалактический параллакс

Солнечная Система, как сотни миллиардов планетных систем нашей галактики обращается вокруг центра галактики в созвездии Стрельца. Один оборот Солнечной Системы вокруг центра галактики (галактический год) равен 225-250 миллионов лет (средняя скорость движения Солнечной Системы в межзвездном пространстве около 220 км в секунду). По причине различий в галактических орбитах другие звезды на земном небе движутся по различным траекториям, с различной угловой и пространственной скоростью.

Как говорилось выше, собственные движения звезд были впервые обнаружены в 1718 году английским астрономом Эдмондом Галлеем (1656-1743). Так как это открытие случилось за столетие до первых измерений параллаксов, звезды с высоким собственным движением стали потенциально интересными для измерения параллаксов. Из трех первых опубликованных параллаксов в 1837-1838 годах, два приходятся на звезды с высоким собственным движением (61 Лебедя и Альфа Центавра). Собственное движение этих систем составляет около 4 угловых секунд в год. Для сравнения, у третьей звезды – Веги собственное движение в 20 раз меньше (Ф. Бессель выбрал эту звезду для измерения параллакса по причине её околорекордной видимой яркости на северном небе). В дальнейшем поиск неизвестных близких звезд в большинстве случаев проходил через первоначальное обнаружение звезд с высоким собственным движением (к примеру, так были обнаружены в 20 веке звезды Проксима Центавра и Летящая Барнарда). В результате этого в последние годы астрономы открывают близкие звездные системы только с минимальным собственным движением (0.15 угловых секунд в год и меньше). Исключением из этого правила могут стать лишь плотные звездные поля или области вблизи очень ярких звезд.

Естественно и наша галактика в космическом пространстве Вселенной не является неподвижным объектом. Сегодня астрономы полагают, что наша галактика с соседними галактиками (Местная группа галактик) входят в состав сверхскопления галактик созвездия Девы. Исследования реликтового излучения в конце 20 века показали, что Солнечная Система движется относительно реликтового излучения со скоростью 368 ± 2 км/с (или 78 астрономических единиц в год). В результате этого движения, объект, который находится в миллионе парсек от нас, и расположен перпендикулярно внегалактическому апексу будет обладать на земном небе собственным движением в 78 угловых микросекунд в год (миллионных долей угловой секунды). Подобная точность измерений является вполне достижимой в последние десятилетия. В ходе измерения собственных движений близких галактик широко используются снимки крупнейших наземных телескопов и космических телескопов Хаббл и Гаяй, а так же данные радиоинтерферометров. К примеру, измерение собственного движения галактики М31 привело к прогнозу её столкновения с нашей галактикой через несколько миллиардов лет.

Схема движения галактик в Местной группе относительно нашей галактики взята из работы A. Brunthaler et al. 2007 года

Измеренное собственное движение галактики Андромеды с расстоянием в 0.8 миллионов парсек составило около 50 угловых микросекунд в год. Для сравнения современные радиоинтерферометры способны регистрировать собственные движения галактик на основе наблюдения мазеров до удаления в 20 миллионов парсек за 10-летние наблюдения. Сложности измерения собственных движений галактик заключаются в необходимости разграничения общего движения всей галактики от орбитального движения отдельных звездных скоплений или межзвездных туманностей в ней. Решением этой проблемы является измерение собственного движения ядер галактик. В связи с этим удобным источником для измерения внегалактических собственных движений являются галактики с активными ядрами (квазары) – одни из ярчайших радиоисточников на земном небе. В работе 2005 года с названием “Quasar Apparent Proper Motion Observed by Geodetic VLBI Networks” сообщается, что геодезическим радиоинтерферометрам в период с 1980 по 2002 годы удалось измерить или ограничить собственное движение 580 квазаров.

У многих из них собственное движение составляет несколько сотен угловых микросекунд

Большинство этих источников находились на огромных расстояниях в многие миллиарды световых лет

В работе 2017 года был опубликован каталог собственных движений 713 внегалактических радиоисточников, которые наблюдались в среднем около 22 лет. Средняя погрешность этих измерений составила 24 угловых микросекунд в год. Эти наблюдения позволили зарегистрировать ускорение движения Солнечной Системы по галактической орбите (статистический уровень значимости 6.3 сигм). Это явление приводит к систематическому изменению угловой скорости внегалактических объектов на несколько микросекунд в год.

Карта собственных движений из нового каталога

Самое большое наблюдаемое собственное движение в вышеназванном каталоге (около 1.5 угловых миллисекунд в год) наблюдается у радиогалактики SDSS J213836.38+001241.8, у которой наблюдаемый блеск в оптическом диапазоне составляет примерно 23 звездных величины (её красное смещение равно 0.6). Для сравнения у одной ближайшей галактики (Большое Магелланово облако) собственное движение равно 2 угловым миллисекундам.

Публикация первых (предварительных) релизов космического телескопа GAIA, который работает в оптическом диапазоне, так же смогла зарегистрировать собственные движения некоторых галактик и квазаров

Актуальность регистрации собственных движений внегалактических объектов в последние годы возрастает в связи с поисками темной (скрытной материи). Как известно темная материя была заподозрена на основе аномально высоких лучевых скоростей движения внешних областей многих галактик. В этих случаях лучевые скорости были измерены через анализ спектров. Измерение собственного движения этих аномальных областей позволило бы лучше прояснить этот вопрос.

comments powered by HyperComments

Паралакс - это... Что такое Паралакс?

Схема параллакса

Паралла́кс (греч. παραλλάξ, от παραλλαγή, «смена, чередование») — изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя.

Зная расстояние между точками наблюдения (база) и угол смещения, можно определить расстояние до объекта: ; для малых углов , где угол α выражен в радианах.

Параллакс используется в геодезии и астрономии для измерения расстояния до удалённых объектов. На явлении параллакса основано бинокулярное зрение.

Суточный параллакс небесных светил

Суточный параллакс (геоцентрический параллакс) — разница в направлениях на одно и то же светило из центра масс Земли (геоцентрическое направление) и из заданной точки на поверхности Земли (топоцентрическое направление).

Из-за вращения Земли вокруг своей оси положение наблюдателя циклически изменяется. Для наблюдателя, находящегося на экваторе, база параллакса равна диаметру Земли и составляет 12 600 км.

При наблюдении Луны её кажущиеся смещения на фоне звёзд (по сравнению с расчётным орбитальным движением) достигают 2° и были замечены уже древнегреческими астрономами, что позволило им довольно точно определить расстояние до Луны.

Суточный параллакс планет довольно мал (для Марса 48″ во время великого противостояния), но тем не менее был единственным способом измерения абсолютных расстояний в Солнечной системе до появления радиолокации: наиболее удобными для этого были прохождения Венеры по диску Солнца и близко подходящие к Земле астероиды (относительные же расстояния легко определяются на основе законов Кеплера, так что достаточно абсолютного измерения какого-то одного расстояния, чтобы определить все).

Годичный параллакс звёзд

Годичный параллакс — угол, под которым виден средний радиус Земной орбиты из центра масс звезды, если направление на звезду перпендикулярно радиусу земной орбиты.

Годичные параллаксы являются показателями расстояний до звёзд. Расстояние, годичный параллакс которого равен 1 угловой секунде, называется парсек (1 парсек = 3,085678×1016 м). Ближайшая звезда Проксима Центавра имеет параллакс 0,77″, следовательно, расстояние до неё составляет 1,295 пк.

Первые успешные попытки наблюдения годичного параллакса звёзд были выполнены В. Я. Струве для звезды Вега (α Лиры), результаты опубликованы в 1837 году. Однако, научно достоверные измерения годичного параллакса были впервые проведены Ф. В. Бесселем в 1838 году для звезды 61 Лебедя. Приоритет открытия годичного параллакса звёзд признается за Бесселем.

Параллакс в фотографии

Параллакс видоискателя

Основная статья: Видоискатель#Параллаксные

Параллакс видоискателя — несовпадение изображения, видимого в оптическом незеркальном видоискателе, с изображением, получаемым на фотографии. Параллакс почти незаметен, когда фотографируют удалённые объекты, и весьма значителен при съёмке близко расположенных объектов. Он возникает из-за наличия расстояния (базиса) между оптическими осями объектива и видоискателя. Величина параллакса определяется по формуле:

,

где  — расстояние (базис) между оптическими осями объектива и видоискателя;  — фокусное расстояние объектива фотоаппарата;  — расстояние до плоскости наводки (объекта съемки).

Параллакс видоискателя (прицел)

Частным случаем является параллакс прицела. Он равен расстоянию между осью ствола и осью прицела, обычно это довольно малая величина при стрельбе по ростовой мишени, но при стрельбе с высокой точностью приходится учитывать те несколько сантиметров, которые разделяют ствол и прицел.

Параллакс дальномера

Параллакс дальномера — это угол, под которым виден объект во время наводки на резкость с помощью оптического дальномера.

Стереоскопический параллакс

Стереоскопический параллакс — это угол, под которым рассматривают объект двумя глазами или когда его фотографируют стереоскопическим фотоаппаратом.

Временно́й параллакс

Временной параллакс — искажение формы объекта параллаксом, возникающим при съёмке фотоаппаратом со шторным затвором. Так как экспозиция происходит не единовременно по всей площади светочувствительного элемента, а последовательно по мере движения щели, то при съёмке быстро движущихся объектов их форма может искажаться. Например, если объект движется в ту же сторону, что и щель, его изображение будет растянуто, а если в обратную, то сужено.

История

Галилео Галилей предположил, что если бы Земля вращалась вокруг Солнца, то это можно было бы заметить из непостоянства параллакса на удалённые звёзды. Впервые это удалось сделать Ф. В. Бесселю в 1835 году.

Ссылки

Wikimedia Foundation. 2010.

ПАРАЛЛАКС - это... Что такое ПАРАЛЛАКС?

Параллакс - это что такое? :

Космос - одно из самых загадочных понятий в мире. Если ночью посмотреть на небо, можно увидеть несметное количество звёзд. Да, наверное, каждый из нас слышал, что во Вселенной больше звёзд, чем песчинок в Сахаре. И учёные с древних времён тянулись к ночному небу, стараясь разгадать загадки, скрывающиеся за этой чёрной пустотой. Начиная с древних времён они совершенствовали методы измерения космических расстояний и свойств звёздного вещества (температуры, плотности, скорости вращения). В этой статье мы расскажем о том, что такое параллакс звезд и как он применяется в астрономии и астрофизике.

Явление параллакса тесно связано с геометрией, но прежде чем рассмотреть геометрические законы, лежащие в основе этого явления, окунёмся в историю астрономии и разберёмся в том, кто и когда открыл это свойство движения звёзд и первым применил его на практике.

История

Параллакс как явление изменения положения звёзд в зависимости от расположения наблюдателя известно очень давно. Ещё Галилео Галилей писал об этом в далёком Средневековье. Он лишь предполагал, что если бы можно было заметить изменение параллакса для далёких звёзд, это было бы доказательством того, что Земля вращается вокруг Солнца, а не наоборот. И это было сущей правдой. Однако доказать это Галилео не смог из-за недостаточной чувствительности тогдашней аппаратуры.

Ближе к нашим дням, в 1837 году, Василий Яковлевич Струве провёл серию экспериментов по измерению годичного параллакса для звезды Веги, входящей в созвездие Лира. Позже эти измерения признали недостоверными, когда в следующем после публикации Струве году, 1838-м, Фридрих Вильгельм Бессель измерил годичный параллакс для звезды 61 Лебедя. Поэтому, как бы это ни было печально, приоритет открытия годичного параллакса принадлежит всё-таки Бесселю.

Сегодня параллакс используется как основной метод измерения расстояний до звёзд и при достаточно точной измерительной аппаратуре даёт результаты с минимальной погрешностью.

Нам следует перейти к геометрии перед непосредственным рассмотрением того, что такое метод параллакса. И для начала вспомним самые азы этой интересной, хотя и нелюбимой многими науки.

Основы геометрии

Итак, то, что нам необходимо знать из геометрии для понимания явления параллакса, - это то, как связаны значения углов между сторонами треугольника и их длины.

Начнём с того, что представим себе треугольник. В нём есть три соединяющихся прямых и три угла. И для каждого разного треугольника - свои величины углов и длин сторон. Нельзя изменить размер одной или двух сторон треугольника при неизменных значениях углов между ними, это одна из фундаментальных истин геометрии.

Представим, что перед нами стоит задача узнать значение длин двух сторон, если мы знаем только длину основания и величины углов, прилегающих к нему. Это возможно с помощью одной математической формулы, связывающей значения длин сторон и величин углов, лежащих напротив них. Итак, представим, что у нас есть три вершины (можете взять карандаш и нарисовать их), образующие треугольник: A, B, C. Они образуют три стороны: AB, BC, CA. Напротив каждой из них лежит по углу: угол BCA напротив AB, угол BAC напротив BC, угол ABC напротив CA.

Формула, которая связывает все эти шесть величин вместе, выглядит так:

AB / sin(BCA) = BC / sin(BAC) = CA / sin(ABC).

Как мы видим, всё не совсем просто. У нас откуда-то появился синус углов. Но как нам найти этот синус? Об этом мы расскажем ниже.

Основы тригонометрии

Синус является тригонометрической функцией, определяющей координату Y угла, построенного на координатной плоскости. Чтобы показать это наглядно, обычно чертят координатную плоскость с двумя осями - OX и OY - и отмечают на каждой из них точки 1 и -1. Эти точки расположены на одинаковом расстоянии от центра плоскости, поэтому через них можно провести окружность. Итак, мы получили так называемую единичную окружность. Теперь построим какой-нибудь отрезок с началом в начале координат и концом на какой-нибудь точке нашей окружности. Конец отрезка, который лежит на окружности, имеет определённые координаты на осях OX и OY. И значения этих координат и будут представлять собой соответственно косинус и синус.

Мы выяснили, что такое синус и как его можно найти. Но на самом деле этот способ чисто графический и создан скорее, чтобы понять саму суть того, что представляют собой тригонометрические функции. Он может быть эффективен для углов, не имеющих бесконечных рациональных значений косинуса и синуса. Для последних же более эффективен другой метод, который основа на применении производных и биномиального вычисления. Он носит название ряда Тейлора. Рассматривать этот способ мы не будем потому, как он достаточно сложен для вычисления в уме. Ведь быстрые вычисления - это работа для компьютеров, которые созданы для этого. Ряд Тейлора используется в калькуляторах для вычисления многих функций, включая синус, косинус, логарифм и так далее.

Всё это довольно интересно и затягивающе, но нам пора двигаться дальше и вернуться к тому, на чём мы закончили: на задаче по вычислению значений неизвестных сторон треугольника.

Стороны треугольника

Итак, вернёмся к нашей задаче: нам известны два угла и сторона треугольника, к которой эти углы прилежат. Нам нужно узнать всего лишь один угол и две стороны. Самым лёгким представляется нахождение угла: ведь сумма всех трёх углов треугольника равна 180 градусам, а значит, можно легко найти третий угол, вычтя из 180 градусов значения двух известных углов. А зная значения всех трёх углов и одной из сторон, можно найти длины двух других сторон. Вы можете проверить это самостоятельно на примере любого из треугольников.

А теперь наконец поговорим о параллаксе как о способе измерения расстояния между звёздами.

Параллакс

Это, как мы уже выяснили, один из самых простых и действенных методов измерения межзвёздных расстояний. Параллакс основан на изменении положения звезды в зависимости от расстояния до неё. Например, измерив угол видимого положения звезды в одной точке орбиты, а затем в прямо ей противоположной, мы получим треугольник, в котором известна длина одной стороны (расстояние между противоположными точками орбиты) и два угла. Отсюда мы сможем найти две оставшиеся стороны, каждая из которых равна расстоянию от звезды до нашей планеты в разных точках её орбиты. В этом и заключается метод, с помощью которого можно вычислить параллакс звезд. Да и не только звезд. Параллакс, эффект которого оказывается на деле очень простым, несмотря на это, используется во многих своих вариациях в совершенно разных областях.

В следующих разделах рассмотрим подробнее области применения параллакса.

Космос

Мы говорили об этом не раз, ведь параллакс - это исключительное изобретение астрономов, призванное измерять расстояния до звезд и прочих космических объектов. Однако тут не всё так однозначно. Ведь параллакс - это метод, у которого есть свои вариации. Например, различают суточный, годичный и вековой параллаксы. Можно догадаться, что все они различаются промежутком времени, которое проходит между этапами измерений. Нельзя сказать, что увеличение временного промежутка увеличивает точность измерения, потому как цели у каждого вида этого метода свои, а точность измерений зависит лишь от чувствительности аппаратуры и выбранного расстояния.

Суточный параллакс

Суточный параллакс, расстояние с помощью которого определяется с помощью угла между прямыми, идущими к звезде из двух разных точек: центра Земли и выбранной точки на Земле. Так как мы знаем радиус нашей планеты, не составит особого труда, используя угловой параллакс, вычислить расстояние до звезды, пользуясь описанными нами ранее математическим методом. В основном суточным параллаксом пользуются для измерения недалёких объектов, таких как планеты, карликовые планеты или астероиды. Для более больших используют следующий метод.

Годичный параллакс

Годичный параллакс - это всё тот же метод измерения расстояний с той лишь разницей, что он сфокусирован на измерение расстояний до звёзд. Это как раз тот случай параллакса, что мы рассматривали в примере выше. Параллакс, определение расстояния до звезды с помощью которого может быть довольно точным, должен обладать одной важной чертой: расстояние, с которого измеряется параллакс, должно быть чем больше, тем лучше. Годичный параллакс удовлетворяет этому условию: ведь между крайними точками орбиты расстояние достаточно велико.

Параллакс, примеры методов которого мы рассмотрели, безусловно, представляет собой важную часть астрономии и служит незаменимым инструментом в измерении расстояний до звёзд. Но на деле сегодня пользуются лишь годичным параллаксом, так как суточный может заменить более продвинутая и быстрая эхолокация.

Идём дальше. Параллакс - это всё-таки оптическое явление, и было бы странно, если бы его свойства использовали лишь в астрономии. Есть ещё одна область применения этого эффекта.

Фотография

Пожалуй, самым известным видом фотографического параллакса можно считать бинокулярный параллакс. Вы его наверняка замечали и сами. Если поднести к глазам палец и по очереди закрывать каждый глаз, можно заметить, что угол зрения на объект меняется. То же самое происходит и при съёмке близких объектов. В объектив мы видим изображение под одним углом зрения, но на самом деле фотография получится с немного другим углом, так как есть разница в расстоянии между объективом и видоискателем (отверстием, через которое мы смотрим, чтобы сделать фотографию).

Перед тем как мы закончим эту статью - пара слов о том, чем же может быть полезно такое явление, как оптический параллакс, и почему стоит узнать о нём больше.

Почему это интересно?

Для начала, параллакс - это уникальное физическое явление, позволяющее нам без особого труда узнать многое об окружающем нас мире и даже о том, что находится за сотни световых лет от него: ведь с помощью этого явления можно вычислять и размеры звёзд.

Как мы уже убедились, параллакс не такое уж далёкое от нас явление, он окружает нас везде, и с помощью него мы видим так, как есть. Это, безусловно, интересно и захватывающе, и именно поэтому стоит обратить внимание на метод параллакса, хотя бы из любопытства. Знание никогда не бывает лишним.

Заключение

Итак, мы разобрали, в чём заключается суть параллакса, почему для определения расстояния до звёзд необязательно иметь сложную аппаратуру, а лишь телескоп и знание геометрии, как это применяется в нашем организме и почему нам может быть это так важно в повседневной жизни. Надеемся, представленная информация была вам полезна!

Временной параллакс - это... Что такое Временной параллакс?

Схема параллакса

Паралла́кс (греч. παραλλάξ, от παραλλαγή, «смена, чередование») — изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя.

Зная расстояние между точками наблюдения (база) и угол смещения, можно определить расстояние до объекта: ; для малых углов , где угол α выражен в радианах.

Параллакс используется в геодезии и астрономии для измерения расстояния до удалённых объектов. На явлении параллакса основано бинокулярное зрение.

Суточный параллакс небесных светил

Суточный параллакс (геоцентрический параллакс) — разница в направлениях на одно и то же светило из центра масс Земли (геоцентрическое направление) и из заданной точки на поверхности Земли (топоцентрическое направление).

Из-за вращения Земли вокруг своей оси положение наблюдателя циклически изменяется. Для наблюдателя, находящегося на экваторе, база параллакса равна диаметру Земли и составляет 12 600 км.

При наблюдении Луны её кажущиеся смещения на фоне звёзд (по сравнению с расчётным орбитальным движением) достигают 2° и были замечены уже древнегреческими астрономами, что позволило им довольно точно определить расстояние до Луны.

Суточный параллакс планет довольно мал (для Марса 48″ во время великого противостояния), но тем не менее был единственным способом измерения абсолютных расстояний в Солнечной системе до появления радиолокации: наиболее удобными для этого были прохождения Венеры по диску Солнца и близко подходящие к Земле астероиды (относительные же расстояния легко определяются на основе законов Кеплера, так что достаточно абсолютного измерения какого-то одного расстояния, чтобы определить все).

Годичный параллакс звёзд

Годичный параллакс — угол, под которым виден средний радиус Земной орбиты из центра масс звезды, если направление на звезду перпендикулярно радиусу земной орбиты.

Годичные параллаксы являются показателями расстояний до звёзд. Расстояние, годичный параллакс которого равен 1 угловой секунде, называется парсек (1 парсек = 3,085678×1016 м). Ближайшая звезда Проксима Центавра имеет параллакс 0,77″, следовательно, расстояние до неё составляет 1,295 пк.

Первые успешные попытки наблюдения годичного параллакса звёзд были выполнены В. Я. Струве для звезды Вега (α Лиры), результаты опубликованы в 1837 году. Однако, научно достоверные измерения годичного параллакса были впервые проведены Ф. В. Бесселем в 1838 году для звезды 61 Лебедя. Приоритет открытия годичного параллакса звёзд признается за Бесселем.

Параллакс в фотографии

Параллакс видоискателя

Основная статья: Видоискатель#Параллаксные

Параллакс видоискателя — несовпадение изображения, видимого в оптическом незеркальном видоискателе, с изображением, получаемым на фотографии. Параллакс почти незаметен, когда фотографируют удалённые объекты, и весьма значителен при съёмке близко расположенных объектов. Он возникает из-за наличия расстояния (базиса) между оптическими осями объектива и видоискателя. Величина параллакса определяется по формуле:

,

где  — расстояние (базис) между оптическими осями объектива и видоискателя;  — фокусное расстояние объектива фотоаппарата;  — расстояние до плоскости наводки (объекта съемки).

Параллакс видоискателя (прицел)

Частным случаем является параллакс прицела. Он равен расстоянию между осью ствола и осью прицела, обычно это довольно малая величина при стрельбе по ростовой мишени, но при стрельбе с высокой точностью приходится учитывать те несколько сантиметров, которые разделяют ствол и прицел.

Параллакс дальномера

Параллакс дальномера — это угол, под которым виден объект во время наводки на резкость с помощью оптического дальномера.

Стереоскопический параллакс

Стереоскопический параллакс — это угол, под которым рассматривают объект двумя глазами или когда его фотографируют стереоскопическим фотоаппаратом.

Временно́й параллакс

Временной параллакс — искажение формы объекта параллаксом, возникающим при съёмке фотоаппаратом со шторным затвором. Так как экспозиция происходит не единовременно по всей площади светочувствительного элемента, а последовательно по мере движения щели, то при съёмке быстро движущихся объектов их форма может искажаться. Например, если объект движется в ту же сторону, что и щель, его изображение будет растянуто, а если в обратную, то сужено.

История

Галилео Галилей предположил, что если бы Земля вращалась вокруг Солнца, то это можно было бы заметить из непостоянства параллакса на удалённые звёзды. Впервые это удалось сделать Ф. В. Бесселю в 1835 году.

Ссылки

Wikimedia Foundation. 2010.


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.