Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Кенотрон что это такое


Кенотрон - это... Что такое Кенотрон?

Кенотроны 1Ц21П, Uобр=25 кВ (СССР, 70-е годы)

Кенотро́н (от др.-греч. kenos — пустой и (elec)tron) — радиолампа, предназначенная для выпрямления переменного тока (мощная разновидность электровакуумного диода). Одиночный (одноанодный) кенотрон содержит катод прямого или косвенного накала и анод. Двуханодные кенотроны, предназначенные для двухполупериодного выпрямления, имеют два анода с общим (6Ц4П) или раздельными катодами. В СССР, маркировались буквой «Ц» (например, 1Ц11П, 1Ц21П, 3Ц22С), однако ряд кенотронов маркирован буквой «Д», зарезервированной для детекторных (сигнальных) диодов. В Единой европейской системе (вторая литера) они маркировались Y — одноанодный кенотрон, Z — двуханодный.

Применяются в блоках питания для выпрямления напряжения питания электронных устройств до 1 кВ (для более высоких напряжений применялись газонаполненные ртутные выпрямители). В настоящее время в массовой аппаратуре вытеснены выпрямительными полупроводниковыми диодами. Выгоды кенотронного выпрямления в высококачественной аппаратуре — «мягкий старт», защищающий нагрузку и силовой трансформатор от броска напряжения и тока при включении, и отсутствие переключательных помех, свойственных кремниевым диодам.

В современной любительской практике распространены:

В промышленной практике, исходя из требований заменяемости и ремонтопригодности, в подавляющем большинстве используются только те кенотроны, выпуск которых продолжается в настоящее время (РФ, Китай) — вышеупомянутые 5Y4G, 5Z4G и 5AR4/GZ34, не имеющий советского аналога.

Демпферные диоды

Это — особый класс низковольтных кенотронов косвенного накала для демпфирования колебаний выходного трансформатора строчной развёртки телевизионных приёмников. Способны выдерживать кратковременные броски тока, существенно большие, чем обычные кенотроны той же мощности. В современной практике не используются по прямому назначению, но могут эффективно работать в силовых выпрямителях ламповой аппаратуры. Одноанодные; как правило, катод, а не анод выведен на верхний колпачок лампы, что отличает демпферные диоды от других крупных высоковольтных радиоламп. Такая конструкция применялась в связи со спецификой схем строчной развёртки, которые создавали броски напряжения на катоде демпфера до 600В.

В современной любительской (но не промышленной) практике распространены:

Высоковольтные маломощные кенотроны

Широко использовались для преобразования импульсного напряжения обратного хода строчной развёртки телевизоров в постоянное высокое анодное напряжение кинескопов (10 кВ и выше при максимальном токе — единицы миллиампер). Имеют характерную «стаканообразную» конструкцию электродов, хорошо различимую через стеклянный баллон. Анод обычно выведен к колпачку на баллоне. Не используются в современной практике.

Высоковольтные мощные кенотроны

Широко использовались и используются в настоящее время для выпрямления переменного напряжения в высоковольтной аппаратуре (научные приборы, источники питания генераторных ламп, рентгеновские установки) при больших значениях протекающего тока. В СССР выпускались рентгеновские кенотроны с допустимым обратным напряжением до 1 мегавольт при прямом токе до 30 мА.

Источники

Ссылки

Кенотрон

Кенотрон

Кенотрон - электронная лампа, предназначенная для выпрямления переменного тока. Является разновидностью электровакуумного диода. Используется в схемах выпрямителей переменного тока высоких напряжений, ранее широко применялся в схемах выходных каскадов строчной развертки ламповых телевизоров и в рентгеновских установках.

Конструкция кенотронов

Кенотроны имеют два основных типа конструкции: одноанодный и двуханодный. Одноанодный кенотрон содержит один вакуумный диод в баллоне лампы. Двуханодный кенотрон содержит два вакуумных диода в одном баллоне. Обычно в конструкции двуханодного кенотрона эти диоды имеют один общий катод и два анода, для использования в схеме двухполупериодного выпрямления со средней точкой.

Кенотроны обычно выполнены в стеклянном баллоне. Конструкция катода зависит от назначения кенотрона. Силовые кенотроны имеют подогревные катоды, что обеспечивает достаточно большую силу выпрямленного тока. Высоковольтные кенотроны имеют катоды прямого накала, позволяющие лампам выдерживать большие обратные напряжения (снимается проблема высоковольтной изоляции между катодом и подогревателем). Анод кенотрона металлический, обычно трубчатой конструкции. Высоковольтные кенотроны имеют аноды, оформленные в виде стакана; вывод анода сделан отдельно от других выводов на верхнем колпачке баллона лампы. Размеры анода зависят от допустимой силы выпрямленного тока и допустимого обратного напряжения. Чем выше эти величины тем больше размеры анода.

Маркировка кенотронов

В СССР кенотроны маркировались буквой «Ц» (например, 1Ц11П, 1Ц21П, 3Ц22С), однако некоторые кенотроны маркированы буквой «Д», предназначенной для детекторных (сигнальных) диодов. Это исключение было сделано для силовых кенотронов малой мощности и демпферных диодов (например 6Д20П). В Единой европейской системе (вторая литера) они маркировались Y — одноанодный кенотрон, Z — двуханодный.

Подклассы кенотронов

Силовые кенотроны

Применяются в схемах выпрямителей переменного тока низкой частоты порядка 10-100 герц. Эти выпрямители используются в схемах источников питания постоянного тока с напряжением порядка 100-1000 вольт и силой тока порядка сотен миллиампер. Эти источники питания предназначены для питания ламповой электронной аппаратуры малой мощности (бытовая радиоаппаратура, маломощные радиостанции, маломощные трансляционные установки, электронные измерительные приборы, простые автоматические устройства). Блоки питания мощной электронной аппаратуры используют в своих схемах газотроны, которые имеют больший выпрямленный ток и обратное напряжение. Производство полупроводниковых диодов, выдерживающих обратное напряжение порядка сотен вольт (например, 1N4004) позволило отказаться от применения силовых кенотронов в массовой электронной аппаратуре. В настоящее время силовые кенотроны используются в ламповой аппаратуре высококачественного звуковоспроизведения. Здесь используются преимущества кенотронного выпрямителя по сравнению с полупроводниковым: «мягкий старт», защищающий нагрузку и силовой трансформатор от броска напряжения и тока при включении, и отсутствие переключательных помех, свойственных кремниевым диодам.

В современной практике распространены такие кенотроны:

В промышленной практике, исходя из требований заменяемости и ремонтопригодности, в подавляющем большинстве используются только те кенотроны, выпуск которых продолжается в настоящее время (РФ, Китай) — вышеупомянутые 5Y4G, 5Z4G и 5AR4/GZ34, не имеющий советского аналога.

Демпферные диоды

Разновидность кенотронов применяемых для демпфирования колебаний тока в выходном трансформаторе строчной развёртки ламповых телевизоров. Имеют оксидный подогревный катод с большим током эмиссии. Способны выдерживать кратковременные импульсы тока силой порядка нескольких ампер и длительностью порядка нескольких микросекунд. Сила тока в импульсе превышает на порядок силу тока в обычных кенотронах той же мощности. Напряжение на катоде демпферного диода может быть порядка нескольких тысяч вольт, поэтому вывод анода демпферного диода сделан отдельно от других выводов на верхнем колпачке баллона лампы.

В настоящее время ламповые телевизоры не выпускаются и почти вышли из употребления, поэтому демпферные диоды по прямому назначению не используются. Они применяются в силовых выпрямителях ламповой аппаратуры.

В современной любительской (но не промышленной) практике распространены:

Высоковольтные маломощные кенотроны

Широко использовались для преобразования импульсного напряжения обратного хода строчной развёртки телевизоров в постоянное высокое напряжение для питания анодов кинескопов. Такие источники питания развивали постоянное напряжение от 10-30 кВ и силу тока порядка одного миллиампера. Кенотроны имеют характерную конструкцию анода, похожую на металлический стаканчик, хорошо видимый через стеклянный баллон (см. кенотрон 1Ц21П на фотографии). Анод обычно выведен к колпачку на баллоне. В настоящее время не используются в электронике, однако активно используются радиолюбителями для построения самодельных маломощных рентген аппаратов.

Высоковольтные мощные кенотроны

Предназначены для выпрямления переменного тока высокого напряжения (от единиц до сотен киловольт). Сила выпрямленного тока зависит от назначения и может быть от десятков миллиампер до десятков ампер. Применяются в современной электронной аппаратуре (научные приборы, мощные радиопередатчики, рентгеновские установки). В СССР выпускались рентгеновские кенотроны с допустимым обратным напряжением до 1 мегавольт при прямом токе до 30 мА.

См. также

Ссылки

Просмотров всего: 482, Просмотров за день: 1

Кенотрон — выпрямитель переменного тока

Выпрямление переменного тока является одним из весьма распространенных применений полупроводникового или вакуумного диода. Последние, предназначенные для этой цели, получили даже специальное название – кенотронов. В радиоаппаратуре с питанием от сетей переменного тока, и, в частности, в сетевых радиоприемниках или схемах выходных каскадов строчной развертки ламповых телевизоров применяют кенотронные выпрямители.

Однако кенотронный выпрямитель такого простого типа, как мы представляем классический вакуумный диод, лишь в сравнительных редких случаях пригоден для использования. Его недостаток состоит в том, что он дает пульсирующее напряжение. Чтобы разобраться в этом явлении, представим себе, что в цепь нашего выпрямителя включен какой-то потребитель тока – приемник, усилитель или какой-либо другой аппарат. В технике принято называть потребителей, пользующихся энергией из какой-нибудь цепи, нагрузкой. В соответствии с эти сопротивление R , олицетворяющее собой нагрузку, называется сопротивлением нагрузки, нагрузочным сопротивлением, а иногда для краткости и просто нагрузкой.При прохождении тока через сопротивление нагрузки R на нем образуется падение напряжения U. Знак и величина этого напряжения зависят от направления и величины тока. Поскольку пульсирующий ток в цепи диода течет всегда в одном направлении, знак напряжения на нагрузке будет постоянным, но величина его окажется переменной. В течение положительного полупериода переменного тока напряжение на нагрузке будет возрастать вместе с током, дойдет до наибольшего значения, затем уменьшится до нуля. Во время отрицательного полупериода переменного тока напряжения на нагрузке вообще не будет. Следовательно, в итоге на нагрузке создастся пульсирующее напряжение, то появляющееся, то снова исчезающее. Между тем для питания большинства приборов и аппаратов требуется постоянное напряжение, знак и величина которого строго постоянны. Поэтому пульсирующее напряжение, которое дает наш простейший выпрямитель, надо превратить в постоянное, надо, как говорят, сгладить пульсации. Такое сглаживание производится при помощи специальных фильтров.

Простейшим фильтром является конденсатор С, присоединенный параллельно нагрузке R. Во время прохождения по цепи импульса выпрямленного тока конденсатор этот зарядится напряжением, равным по величине наибольшему падению напряжения на нагрузке. Когда ток в цепи начнет уменьшаться, падение напряжения на сопротивлении R должно было бы точно также уменьшаться. Но наличие конденсатора меняет картину. При уменьшении величины тока в цепи конденсатор начнет разряжаться через сопротивление нагрузки, поддерживая этим самым в нагрузке ток такого же направления. Поэтому при разряде конденсатора на сопротивлении нагрузки образуется падение напряжения такого же знака, как и при прохождении выпрямленного тока.

По мере разряда конденсатора напряжение на его обкладках будет постепенно уменьшаться и падение напряжения на сопротивлении нагрузки.

Такая компенсация уменьшения напряжения может быть показана графически. Хотя ток и остается пульсирующим, но характер пульсаций изменился. Периоды, когда ток отсутствует, исчезли, хотя величина тока все же уменьшается очень значительно. Заряд, накопленный на конденсаторе, позволил заполнить просветы между импульсами выпрямленного тока.

Чем больше емкость конденсатора, тем больше и его заряд и, следовательно, тем дольше он сможет поддерживать ток в нагрузке. Если емкость конденсатора достаточно велика, то он не успевает разрядится до нуля за время отрицательного полупериода переменного тока, и поэтому ток в нагрузке не прекратится, а лишь уменьшится. Если бы емкость конденсатора была бесконечно велика, то конденсатор вообще не успевал бы разрядиться и напряжение на нагрузке оставалось постоянным. Поэтому на практике всегда стремятся сколь возможно увеличить емкость конденсатора фильтра.

Дальнейшее улучшение сглаживающих свойств фильтра достигается путем введения в него дросселя L – катушки со стальным сердечником, обладающей большой индуктивностью, и второго конденсатора C2. Дроссель обладает свойством препятствовать нарастанию и убыванию тока в цепи и поэтому способствует сглаживанию пульсаций выпрямленного тока. Назначение второго конденсатора С2 такое же, как и первого С1. В результате действия такого фильтра на нагрузке получается постоянное напряжение практически лишенное пульсации. В фильтрах недорогих аппаратов, потребляющий небольшой ток, вместо дросселя иногда применяют сопротивления.В рассмотренной нами схеме выпрямителя кенотрон пропускал ток в течении одного полупериода. Второй полупериод не использовался. Можно значительно улучшить выпрямитель, включив в схему не один кенотрон, а два. Проследим, как будет проходить выпрямленный ток в такой схеме.Переменное напряжение на аноды ламп будем подавать через трансформатор, вторичная обмотка которого имеет от середины отвод, соединенный с катодами. Напряжение на концах этой обмотки будет периодически изменятся относительно ее средней точки: в течение одной половины периода оно будет положительным на одном конце и отрицательным на другом. Во время второй половины периода полярность будет обратной.

Как же будут в таких условиях работать кенотроны?

Пусть в некоторый начальный момент напряжение на конце обмотки Н1, а следовательно, и на аноде кенотрона Л1 положительно. Кенотрон Л1 будет пропускать ток, который пройдет по сопротивлению нагрузки R и создаст на нем падение напряжения, полярность которого показана на схеме. На аноде второго кенотрона в это время будет минус, и ток в его цепи не возникает.

В следующий полупериод картина изменится. Положительное напряжение появится на аноде лампы Л2. Ток через лампу Л1 прекратится, он потечет уже через лампу Л2. Но направление тока в нагрузке от этого не изменится. Как в первой, так и во второй половине периода ток будет «выходить» из одного из концов обмотки, проходить через тот или иной кенотрон и «возвращаться» через нагрузку в середину обмотки. Ток в нагрузке в течении обеих половин периода будет одинакового направления.

Такая схема выпрямления называется двухполупериодной в отличие от первой, рассмотренной нами, которую называют однополупериодной.

На схеме, которую мы только что рассматривали, показаны два диода – два одинаковых кенотрона. Нельзя ли упростить устройство и заменить две лампы одной?

Сделать это можно. Из схемы видно, что катоды обеих ламп соединяются вместе, значит, у этих ламп может быть один общий катод. Аноды у ламп должны быть отдельные, потому что они присоединены к двум различным точкам обмотки трансформатора. Следовательно, можно сделать лампу, у которой будет один катод и два анода, одна лампа заменит два отдельных анода.

Большинство кенотронов имеет два анода, почему их и называют двуханодными кенотронами. Такие кенотроны широко использовались в отечественных радиоприемниках. Наиболее были распространены кенотроны 5Ц4С, 6Ц5С, 6Ц4П. Но выпускались и одноанодные кенотроны. Например, в телевизорах для выпрямления очень высокого напряжения применялись одноанодные кенотроны 1Ц1С или 1Ц11П.Полная практическая схема двухполупериодного выпрямителя несложна. Выпрямитель состоит из трех частей: трансформатора, кенотрона и фильтра. У трансформатора три обмотки – сетевая, включающаяся в бытовую сеть, накала кенотрона, с которой соединяется нить накала кенотрона и повышающая, с концов которой подается напряжение на аноды кенотрона; может быть еще обмотка накала ламп, работающих в том аппарате, который питается от выпрямителя. Повышающая обмотка обычно содержит больше витков, чем сетевая, и напряжение на ней выше напряжения сети.Если требуется небольшой выпрямленный ток, то в качестве кенотрона можно использовать детекторный диод, например 6Х6С или 6Х2П, которые с успехом будут выпрямлять ток промышленной частоты. Но обратно, т. е. замены детекторного диода кенотроном, делать нельзя, так как кенотрон по своей конструкции совершенно не приспособлен для работы в цепях высокой частоты.

Возможно, вам это будет интересно:

кенотрон - это... Что такое кенотрон?

кенотрон - это... Что такое кенотрон?

Page 2

КЕНОТРОН - это... Что такое КЕНОТРОН?


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.