Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Инвертор что это такое


Что такое инвертор: принцип работы, разновидности и области применения

Одна из самых значительных достижений 19-го века была связана не с землей или ресурсами, а с установлением типа электричества, которое все чаще стало внедряться в наши здания. Существует два вида тока: постоянный ток (DC) и переменный ток (AC). Ученых всегда интересовала возможность преобразования одного вида в другой. Так появился инвертор.

История появления преобразователя

В конце 1800-х годов американский электрик-пионер Томас Эдисон (1847−1931) вышел из своей лаборатории, чтобы продемонстрировать, что постоянный ток (DC) является лучшим способом подачи электроэнергии, чем переменный ток (AC), который был новой системой, поддерживаемой его сербским соперником Николой Тесла (1856−1943). Эдисон пробовал всевозможные хитрые способы убедить людей в том, что AC слишком опасен: от электроочистки слона до поддержки использования переменного тока в электрическом стуле для управления смертной казнью. Несмотря на это, система Tesla выиграла тот день, и мир с тех пор довольно много работает на электросети.

Единственная проблема заключается в том, что, хотя многие из наших приборов предназначены для работы с переменным током, маломощные генераторы часто производят постоянный. Это означает, что если вы хотите запустить что-то вроде гаджета с питанием от переменного тока от аккумуляторной батареи постоянного тока в мобильном доме, вам потребуется устройство, которое преобразует DC в AC-инвертор, как его называют.

Электричество постоянного и переменного тока

Когда преподаватели науки объясняют основную идею электричества как поток электронов, они обычно говорят о постоянном токе (DC). Мы узнаем, что электроны немного похожи на линию муравьев, идущих вместе с пакетами электрической энергии так же, как муравьи несут листья. Это достаточно хорошая аналогия для чего-то вроде базового фонарика, где у нас есть схема (сплошная электрическая петля), соединяющая батарею, лампу и выключатель, а электрическая энергия систематически транспортируется от батареи к лампе, пока вся энергия батареи истощается.

В больших бытовых приборах электричество работает по-другому. Источник питания, который поступает от розетки в стене, основан на переменном токе (AC), где электричество переключается в направлении 50−60 раз в секунду (другими словами, на частоте 50−60 Гц). Трудно понять, как AC доставляет энергию, когда он постоянно меняет свое мнение о том, куда он идет. Если электроны, выходящие из настенной розетки, добираются, скажем, на несколько миллиметров вниз по кабелю, тогда нужно обратить вспять направление и вернуться назад, как они когда-либо добираются до лампы на столе, чтобы та засветилась?

Ответ на самом деле довольно прост. Представьте, что между лампой и стеной заполнены электроны. Когда вы щелкаете на переключателе, все электроны, заполняющие кабель, вибрируют назад и вперед в нитях лампы — и это быстрое перетасовка преобразует электрическую энергию в тепло и лампа засвечивается. Электроны необязательно должны вращаться по кругу для переноса энергии: в АС они просто «бегут на месте».

Одним из наследий Теслы (и его делового партнера Джорджа Вестингауза, босса Westinghouse Electrical Company) является то, что большинство приборов, которые мы имеем в наших домах, специально разработаны для работы от сети переменного тока. Приборы, нуждающиеся в постоянном токе, но потребляющие электроэнергию от розетки переменного, нуждаются в дополнительной части оборудования, называемой выпрямителем, как правило, из электронных компонентов, называемых диодами, для преобразования AC в DC.

Инвертор выполняет противоположную работу, и довольно легко понять ее суть. Предположим, у вас есть аккумулятор в фонарике, а переключатель закрыт, поэтому DC течет по цепи всегда в том же направлении, что и гоночный автомобиль вокруг дорожки. Теперь, если вы вытащите батарею и развернете ее, предполагая, что это соответствует другому способу, он почти наверняка все еще подаст свет, и вы не заметите какой-либо разницы в освещение, которое вы получаете, — но электрический ток будет протекать противоположным образом.

Предположим, у вас были молниеносные руки, и они были достаточно ловкими, чтобы переворачивать батарею 50−60 раз в секунду. Тогда бы вы стали своего рода механическим инвертором, превратив питание постоянного тока батареи в переменный на частоте 50−60 Гц.

Конечно, инверторы, которые вы покупаете в электрических магазинах, работают не так, хотя некоторые из них действительно механические: они используют электромагнитные переключатели, которые быстро переключаются на текущее направление. Инверторы, подобные этому, часто производят так называемый прямоугольный выход: ток либо протекает в одну сторону, либо наоборот, или он мгновенно переключается между двумя состояниями.

Такие внезапные перемены направления опасны для некоторых видов электрооборудования. При нормальной мощности AC, он постепенно переходит с одной стороны в другую в виде синусоидальной волны.

Электронные инверторы могут использоваться для создания такого рода плавно изменяющегося выхода переменного от входа постоянного тока. Они используют электронные компоненты, называемые индукторами и конденсаторами, для увеличения и снижения выходного тока, чем резкий, прямоугольный выходной сигнал включения / выключения, который вы получаете с помощью базового инвертора.

Инверторы также могут использоваться с трансформаторами для изменения определенного входного напряжения DC на совершенно другое выходное напряжение переменного (выше или ниже), но выходная мощность всегда должна быть меньше входной мощности. Из закона сохранения энергии следует, что инвертор и трансформатор не может выдавать больше энергии, чем они потребляют, и некоторая энергия должна быть потеряна как тепло, поскольку электричество протекает через различные электрические и электронные компоненты. На практике эффективность инвертора часто превышает 90 процентов, хотя базовая физика говорит нам, что какая-то часть энергии — какой бы она ни была — всегда где-то теряется.

Принцип работы устройства

Представьте, что вы аккумулятор постоянного тока, и кто-то хлопает вас по плечу и просит вас вместо этого произвести переменный. Как бы вы это сделали? Если весь ток, который вы производите, вытекает в одном направлении, как насчет добавления простого переключателя на ваш выход? Включение и выключение вашего тока может очень быстро обеспечить импульсы DС, которые могли бы выполнять как минимум половину работы. Чтобы сделать правильный AC, вам понадобится переключатель, который позволит полностью отменить ток и сделать это примерно 50−60 раз в секунду. Визуализируйте себя как человеческую батарею, которая меняет контакты туда и обратно более 3000 раз в минуту.

По сути, старомодный механический инвертор сводится к коммутационному блоку, подключенному к трансформатору. А так как электромагнитные устройства, которые меняют низковольтный переменный на высоковольтный ток или наоборот, используя две катушки провода (называемые первичной и вторичной) ранами вокруг общего железного ядра.

В механическом инверторе либо электродвигатель, либо какой-либо другой механизм автоматического переключения переворачивает входящий ток вперед и назад в основном просто путем изменения контактов и генерирует переменный во вторичном режиме. Коммутационное устройство работает так же, как в электрическом дверном звонке. Когда питание подключено, оно намагничивает переключатель, вытягивает его и очень быстро отключает. Пружина снова вернет переключатель, включив его, и потом будет повторять процесс снова и снова.

Частота переключения задается сигналами управления, формируемыми управляющей схемой (контроллером). Контроллер также может решать дополнительные задачи:

Инверторы могут быть очень большими и массивными, особенно если они имеют встроенные батарейные блоки, поэтому они могут работать автономно. Они также генерируют много тепла, поэтому у них большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы. Самые маленькие инверторы — это более портативные коробки размером с автомобильное радио, которое вы можете подключить к гнезду прикуривателя, чтобы произвести AC для зарядки портативных компьютеров или мобильных телефонов.

Так же, как приборы различаются по мощности, которую они потребляют, инверторы различаются по мощности, которую они производят. Как правило, чтобы быть в безопасности, вам понадобится инвертор, рассчитанный на четверть выше максимальной мощности устройства, которое вы хотите использовать. Это позволяет предположить, что некоторые приборы (например, холодильники и морозильники или люминесцентные лампы) потребляют максимальную мощность при первом включении. Хотя инверторы могут обеспечивать максимальную мощность в течение коротких периодов времени, важно отметить, что они не предназначены для работы на пиковой мощности в течение длительного времени.

По принципу действия инверторы делятся на:

Здоровенные приборы в наших домах, которые используют большое количество энергии (такие вещи, как электрические нагреватели, лампы накаливания, чайники или холодильники), не очень заботятся о том, какую форму волны они получают: все, что они хотят, это энергия и как можно больше. Электронные устройства, с другой стороны, намного более суетливы и предпочитают более плавный вход, который они получают от синуидальной волны.

Это прекрасно, если ваша главная цель — создать собственную силу. Но это не так полезно, если вы хотите иногда быть независимыми от сети, или вам нужен резервный источник питания в случае сбоя, потому что если ваше соединение с сетью опускается, и вы не производите электричество самостоятельно (например, это ночное время, и ваши солнечные панели неактивны), инвертор тоже опускается, и вы полностью без энергии, независимо от того, генерируете ли вы свою силу или нет.

По этой причине некоторые люди используют бимодальные или двунаправленные устройства, которые могут работать как в автономном, так и в сетчатом режиме (хотя и не одновременно). Поскольку у них есть дополнительные части, они, как правило, более громоздки и дороже.

Крупные коммутационные устройства для применений передачи энергии, установленные до 1970 года, преимущественно использовали ртутно-дуговые клапаны. Современные инверторы обычно являются твердотельными (статические инверторы). Современный метод проектирования включает компоненты, расположенные в конфигурации моста H. Этот дизайн также довольно популярен среди небольших потребительских устройств.

Используя трехмерную печать и новые полупроводники, исследователи из Национальной лаборатории Oak Ridge Департамента энергетики создали инвертор мощности, который мог бы сделать электромобили более легкими, более мощными и более эффективными.

Инвертор: что это такое и как работает устройство, история появления и классификация

Одним из наиболее важных достижений науки в XIX веке стало установление электричества. Благодаря этому у человека появилась возможность выполнять любую работу после захода солнца, что раньше было невозможным. Сегодня существует два вида тока — постоянный и переменный, но специалистов всегда интересовала возможность превращения одного в другой, что привело к появлению инвертора. Что это такое и принцип работы можно узнать из соответствующей литературы.

В конце 80-х годов XIX века Томас Эдисон в своей лаборатории получил постоянный ток и решил поделиться со всеми этим открытием. Ученый утверждал, что такой источник гораздо лучше, чем переменный ток для питания приборов.

Переменный источник тока за несколько лет до этого открыл ученый из Сербии Никола Тесла и активно распространял идею среди всех своих поклонников. Эдисон стал его конкурентом и старался убедить людей в том, что переменный ток опасен для людей и неэффективен для питания электроприборов.

Несмотря на все доводы, Никола Тесла имел достаточно много поклонников, его методика активно использовалась, и на тот момент Эдисон в соревновании проиграл. И хотя переменный ток необходим и сегодня, но постоянный считается лучшим вариантом для питания электроприборов.

Стоит отметить, что многие приспособления, предназначенные для работы с переменным током, выделяют постоянный. Это приводит к тому, что при запуске такого устройства человеку потребуется дополнительный прибор для преобразования постоянного тока в переменный, то есть инвертор.

Типы электричества

Большинство преподавателей, которые предоставляют студентам информацию об электричестве, говорят в основном о постоянном токе (DC). Он представляет собой поток электронов, которые следуют друг за другом на определенном расстоянии. Наиболее популярная аналогия от опытных учителей — сравнение потока с муравьями, идущими колонной и несущими на себе обычные сухие листья.

Такое представление довольно обобщенное, но основная идея правильная. Схема напоминает сплошную электрическую петлю, приводящую в работу обычный фонарик. Однако в больших бытовых приспособлениях электричество работает по-другому. Розетки, вмонтированные в стену, поставляют приборам источник энергии, основанный на переменном токе (AC). В нем электричество переключается с большой скоростью, составляющей 50−60 раз в секунду, то есть частота таких переключений — 50−60 Гц.

Обычному человеку, который не обладает знаниями в области электроники, не совсем понятно, как такой ток питает приборы, если постоянно меняет направление своего движения. Однако ответ на этот вопрос прост. Например, можно взять обычную настенную лампу, работающую от источника переменного тока. При включении ее в розетку электроны начинают активно двигаться, меняться местами и менять направление движения. Весь процесс происходит очень быстро, поэтому в проводах образуется тепло.

Именно это тепло и будет переходить в лампу, приводя к ее свечению. Переменный ток также эффективно питает приспособления, как и постоянный, но электроны в нем движутся на месте.

Общие сведения о приборе

Величайшее открытие Николы Теслы сегодня используется человечеством повсюду. Большинство приспособлений в каждом доме предназначены для работы от источника постоянного тока, но от розеток идет переменный. Именно поэтому почти всегда требуется специальное устройство или выпрямитель, который будет преобразовывать AC в DC.

Инвертор же выполняет совершенно противоположную функцию. Можно рассмотреть его работу на примере обычного фонарика. Прибор небольшой и питается от встроенного аккумулятора, который становится источником постоянного тока. Если извлечь его из приспособления, перевернуть другим полюсом и снова установить, разницы в работе или в качестве освещения не будет заметно. Однако электричество будет протекать по-другому.

Такой процесс можно сравнить с механическим преобразователем, когда человеческие руки поворачивают аккумулятор со скоростью 50−60 раз в секунду. Конечно, приборы, которые можно приобрести в специализированных магазинах, работают несколько иначе. Для постоянного изменения направления движения электронов используются магнитные переключатели. Однако такая конструкция только у приспособлений механического типа.

Электронные инверторы меняют направление плавно, исключая резкие перепады напряжения. Второй тип считается более предпочтительным вариантом, поскольку постоянные скачки напряжения отрицательно отражаются на функционировании некоторых электроприборов. Конструкция таких инверторов оснащена специальными индукторами и конденсаторами. Эти детали смягчают поток энергии на входе и выходе, за счет чего и образуется плавный источник питания для электроприборов.

В некоторых случаях инверторы применяются для трансформаторов с целью преобразования источника переменного тока на более высокую или низкую частоту в зависимости от нужд конкретного потребителя. Стоит отметить, что выходная мощность всегда меньше входной. Это необходимо для нормального функционирования устройств. Любой трансформатор или инвертор не может выделять больше энергии, чем потребляет, поскольку некоторая ее часть теряется.

Принцип работы

Действует инвертор по простому принципу, который можно понять, если привести конкретный пример. Обычный аккумулятор работает примитивно и выдает постоянный поток тока, не меняющего своего направления. Если в эту конструкцию добавить переключатель, который на выходе будет менять направление движения электронов, то к прибору будет поступать уже AC. Чтобы сделать его правильным, переключатель должен работать исправно и на протяжении секунды срабатывать не менее 50 раз. В минуту происходит около 3000 изменений в потоке электронов.

Механический инвертор работает несколько иначе и посредством специальных магнитов также быстро изменяет направление тока. Принцип его функционирования напоминает дверной звонок. При нажатии на кнопку человек воздействует на пружину, которая подает сигнал к изменению мощности и потока электроэнергии. При отпускании все возвращается в исходное положение. Устройство также оснащено специальным контроллером, который выполняет и другие функции:

Благодаря этому даже механическая модель устройства позволяет крупным электроприборам работать бесперебойно.

Классификация устройств

Существует множество моделей инверторов. Они могут быть массивными и оснащенными специальными аккумуляторами. Выпускаются портативные модели, которые имеют небольшие размеры и используются в разных целях. Разделяют приспособления и по мощности, которую они потребляют и производят. Этот параметр считается основным при выборе, особенно если необходим высокий показатель, например, на производстве.

Стоит отметить, что даже самые мощные инверторы не предназначены для длительного функционирования на максимальных показателях. В зависимости от принципа действия устройства делятся на следующие:

Автономные модели обычно используются для кратковременной работы и не зависят от источника тока. Отдельные приборы предназначены специально для постоянного подключения к сети. Иногда устройства оснащают солнечными батареями.

Каждый из вариантов имеет свои преимущества. Например, автономные подойдут любым устройствам и могут выручить в сложной ситуации. Солнечные экономят электроэнергию, а зависимые не нуждаются в подзарядке или других условиях, чтобы функционировать. В ночное время солнечная батарея неуместна и не сможет служить владельцу, поэтому такие модели выбирают редко.

Существуют также универсальные устройства, которые могут работать от сети и в автономном режиме, но не одновременно. Недостатком таких приборов будет большой размер, поскольку для обеспечения функционирования в двух режимах необходимо оснастить агрегат дополнительными деталями.

Приборы, которые устанавливались до 1970 года, использовали в работе специальные ртутно-дуговые клапаны. Современные модели обычно твердотельные и считаются более эффективными и безопасными.

Сварочные инверторы

Отдельно стоит выделить специальные инверторы, которые позволяют значительно повысить эффективность работы сварочного аппарата и быстро соединить две металлические детали без усилий и сделать конструкцию надежной. Эти инверторы обладают множеством преимуществ:

  1. Отличаются высокой мощностью и производительностью.
  2. Надежность и долговечность сварных швов.
  3. Возможность выбрать компактную модель и переносить ее в место, где человек будет работать.
  4. Высокий КПД, составляющий почти 90%. Этот показатель гораздо выше, чем у обычных трансформаторов.
  5. Умеренное расходование электрической энергии и экономичность.
  6. Во время работы сварочного аппарата брызги металла отделяются в меньшем количестве, что позволяет экономить не только электроэнергию.
  7. Возможность регулировать подачу тока, делая ее плавной.
  8. Сварщик может выполнять работу по металлу даже при отсутствии большого опыта в этой сфере.

Универсальность устройства позволяет использовать его в разных областях, а возможность выбрать лучшую модель по соотношению цены и качества считается одним из важных преимуществ.

Популярные разновидности

Перед выбором подходящего устройства рекомендуется ознакомиться с его разновидностями и назначением. Существуют модели, используемые только для сварки, а есть приборы для резки металла. Стоит также отметить, что выпускаются устройства для профессионального применения, имеющие большие размеры.

Для домашнего использования стоит выбрать непрофессиональные или полупрофессиональные инверторы. Последние сочетают в себе большее количество функций. При выборе необходимо учитывать входное напряжение. Стандартный показатель равен 220 В, но есть модели, которые предназначены для работы от источника с напряжением 380 В.

Легкость зажигания прибора может колебаться в пределах 40−90 В. Чем выше этот показатель, тем легче работать специалисту. Если человек предполагает использовать устройство на максимальном напряжении длительное время, рекомендуется обращать внимание на цифры, указанные производителем в техническом паспорте. Хороший показатель составляет 70% и выше.

Если владелец знает, что будет работать с тонким металлом, рекомендуется обратить внимание на нижний предел исходящего тока. Эта цифра не должна превышать 10 А. В противном случае есть риск, что новичок испортит материал. У профессионалов такие проблемы возникают редко, поэтому они могут применять любое устройство.

Во многих моделях присутствуют дополнительные функции. Например, горячий старт увеличивает напряжение на короткий период, что облегчает работу. Для новичков в инверторе существует режим антизалипания. Он предотвращает приварку электрода к кромке, что нередко случается, если человек не имеет большого опыта в этом деле. Форсаж дуги — дополнительная функция, позволяющая исключить прилипание электрода в случае отделения от него большой капли расплавленного металла.

Наличие таких режимов значительно облегчает работу для новичка и профессионала, исключает неприятные и аварийные ситуации.

Инвертор — универсальное приспособление, позволяющее сделать работу бытовых, промышленных и других приспособлений более плавной и качественной. При выборе и использовании устройства следует придерживаться рекомендаций, которые облегчат процесс.

Электротехнический инвертор

Сегодня встречается довольно много информации, в которой присутствует слово инвертор. Его используют как способ привлечения внимания покупателей к новинкам той или иной электротехнической продукции. Сегодня можно встретить инверторные кондиционеры, стиральные машины, сварочные аппараты и другие бытовые электроприборы.

Что означает это слово, а также некоторые сведения об устройствах, которые ему соответствуют, будут раскрыты далее более детально.

Находим в словаре значение слова

При желании разобраться с этим словом, можно удостовериться в его многозначимости. Существуют как минимум три инвертора, относящихся к различным областям техники:

Инвертирующий операционный усилитель Изображение цифрового логического инвертирующего элемента НЕ на электрических схемах

Однако ощутимый экономический эффект, а, следовательно, и возможности изготовления хорошо продаваемых изделий, обеспечивают именно электротехнические инверторы. Они позволяют уменьшить как потери электрической энергии, так и вес изделия совместно с его габаритами, поэтому наиболее интересны для широкого круга пользователей. Следовательно, далее расскажем именно о них.   

Основные зависимости

Итак, мы имеем трансформаторы повсюду, где необходимо создать гальванически развязанные от сети (то есть полностью изолированные по постоянному току) источники ЭДС. Но даже маломощный трансформатор получается большим и тяжелым. Чтобы сохранить мощность, но при этом уменьшить его размеры и вес, нужно в первую очередь понимать, что же в трансформаторе происходит. Разберемся в деталях.

В трансформаторе у первичной и вторичной обмоток существует общий магнитный поток. Но связь между обмотками может быть лишь в пределах двух состояний сердечника:

Один и тот же сердечник может достигать состояния насыщения с разной скоростью. Она зависит от величины напряжения, приложенного к первичной (намагничивающей) обмотке, и числа витков в ней. Поэтому за половину периода переменного напряжения сердечник не должен намагничиваться до состояния насыщения. При этих условиях данный сердечник способен обеспечить во вторичной обмотке определенную максимальную мощность. Она будет определена его размерами.

Если для этого же сердечника (а соответственно и трансформатора) частоту намагничивающего напряжения увеличить в два раза, скорость нарастания магнитного потока (относительно длительности периода переменного напряжения) уменьшится примерно в два раза. Следовательно, можно получить мощность во вторичной обмотке тоже примерно в два раза большую. Либо уменьшить примерно в два раза габариты трансформатора с изменением количества витков обмоток, сохранив мощность его на существующем уровне.

Но увеличение частоты приведет к усилению вихревых токов в сердечнике. Эта проблема решается применением специальных сплавов. Их соответствие частоте намагничивающего напряжения показано далее. Поскольку в таблице указаны лишь величины максимальной частоты, укажем нижние значения частотного диапазона:

Характеристики материалов, применяемых для изготовления инверторных трансформаторов Магнитопроводы из пермаллоев Магнитопроводы из ферритов

Теперь, когда стало понятно, что увеличивая частоту намагничивающего напряжения, можно уменьшить вес и габариты трансформатора, нужно решить следующую задачу – как получить это напряжение. Единственное решение – это либо автогенератор, основанный на выходном трансформаторе, либо усилитель, работающий от специального отдельного генератора. А раз так, значит, нужны усиливающие элементы с входным и выходным сигналом.

Чтобы в этих элементах получились минимальные потери, они должны работать как ключи. Электронные лампы, как и появившиеся первые мощные полупроводниковые ключи – тиристоры, требовали включения конденсаторов последовательно с первичной обмоткой выходного трансформатора. Это ограничивало область применения таких инверторов исключительно промышленными потребностями.

Современные инверторные схемы

Но когда появились высоковольтные транзисторы и запираемые тиристоры, стало возможно создавать огромное число самых разнообразных инверторов. Например, сегодня подавляющее большинство бытовых электронных приборов и осветительных ламп использует те или иные варианты инверторных источников питания. Исключение – те устройства, в которых недопустимы электромагнитные помехи. Они в широком спектре частот создаются электрическими импульсами при включении и выключении полупроводниковых ключей.

Для инверторных схем применяется определенная классификация. Их разделяют на однотактные и двухтактные. Разницу поясняет изображение далее. Под тактом здесь подразумевается присоединение ключом (транзистором или иным прибором аналогичного назначения) первичной обмотки выходного трансформатора к намагничивающему напряжению. В однотактном варианте намагничивающий магнитный поток однонаправленный. В двухтактном намагничивающие потоки противоположны.

На схемах вход служит для подачи постоянного напряжения питания инвертора

Однотактная схема

Инверторная схема может быть построена как на основе самовозбуждения (обе схемы на изображении выше), так и управляемой от отдельного источника сигналов (см. ниже).

Однотактный инвертор с управляемым ключом

Поскольку в трансформаторе однотактного варианта не происходит перемагничивания сердечника, его возможности по электрической мощности, снимаемой со вторичной обмотки, получаются недоиспользованными. То есть один и тот же трансформатор в однотактной схеме по мощности уступает в два раза по сравнению с двухтактной схемой. Но зато однотактные схемы – самые надежные, если выпрямитель во вторичной обмотке работает противофазно относительно основного ключа.

На изображении «Однотактный инвертор с управляемым ключом» около Т1 видны две точки. Таким способом в трансформаторе обозначаются концы обмоток с одинаковым потенциалом. В данном варианте ток через диод VD1 течет при открытом ключе VT1. Если при этом произойдет короткое замыкание на выходе выпрямителя (то есть Rн=0), ток в обмотках трансформатора многократно возрастет.

Поскольку запас прочности транзистора незначителен, вероятность его пробоя в такой ситуации 99,99%. Можно избежать порчи полупроводниковых ключей, поменяв местами концы одной из обмоток. В этом варианте в нагрузку будет отдаваться электрическая энергия, получаемая от уменьшения магнитного потока в трансформаторе. Этот процесс начинается с момента выключения транзистора VT1.

А сила тока увеличивается не скачком, как в предыдущем варианте (так называемый прямоходовой вариант, на изображении ниже справа), а нарастает почти линейно (обратноходовой вариант как на изображении ниже слева).

Схема

Мощность в нагрузке получается меньше, чем в случае прямоходовом, но зато короткие замыкания для VT в этой схеме нестрашны. На практике однотактные инверторы применяются в источниках вторичного электропитания мощностью до 200 Вт. При использовании выходного трансформатора для создания автогенерации необходимо избегать насыщения сердечника. Особенно, если он ферритовый. Суть в том, что у ферритов петля гистерезиса близка к прямоугольной (изображение ниже справа).

Поведение намагниченности

Поэтому вблизи насыщения ток намагничивания нарастает настолько быстро, что транзистор не успевает его прервать и сгорает. Чтобы избежать этого, необходимо либо ввести зазор в магнитопровод, либо использовать определенную частоту намагничивающего напряжения. Поскольку зазор заметно уменьшает мощность трансформатора, вместо него последовательно с первичной обмоткой включают дроссель. А частоту генерации задает либо RC-цепь, либо отдельный насыщаемый дроссель в цепи базы транзистора.

Но насыщение магнитопровода – не единственная опасность, угрожающая «жизни» главного ключа в инверторе однотактной схемы. Чем быстрее происходит выключение намагничивающего тока, тем больше напряжение на выключенном транзисторе. Он может быть поврежден этим высоковольтным импульсом.

Осциллограмма напряжения на главном ключе однотактного инвертора

И чтобы избавить главный ключ от перенапряжений, применяется схема на двух транзисторах, показанная далее.

Двухтранзисторный преобразователь

В этой схеме напряжение делится между ними. А также после включения диодов VD1 и VD2 максимальное напряжение на концах обмотки W1 получается лишь немного больше E. Но используя два транзистора, можно построить двухтактный инвертор, который при одних и тех же параметрах напряжения и трансформатора позволит получить мощность в два раза большую, нежели однотактный вариант.

Двухтактные схемы

Известны три основные двухактные схемы. На основе этих инверторов придумано большое число других схем, в которых уменьшены или устранены их недостатки. Схема а) состоит из двух однотактных инверторов, работающих в противофазе. Следовательно, в ней транзисторы также находятся под повышенным напряжением (см. выше).

Три основные двухтактные инверторные схемы (а, б и в)

Полумостовая и мостовая схемы лишены перенапряжений на транзисторах. Но в них есть иная проблема. В этих схемах с автогенерацией колебаний высока вероятность появления сквозного тока. Это явление связано с тем, что выключение транзистора длится дольше, нежели включение. Следовательно, они получаются частично открытыми и проводят некоторый ток, выделяя дополнительное тепло. То есть создают потери, которые могут быть губительными для них. По этой причине для главных ключей предпочтительнее управление от отдельного генератора.

Этот способ дороже, но оправдывает себя надежностью. В управляющем сигнале для каждого ключа создаются несимметричные управляющие импульсы. В результате получается задержка включения (ступенька), которая позволяет избежать сквозного тока. 

Получение ступеньки напряжения в двухтактной инверторной схеме

Хотя в мостовой схеме в два раза больше транзисторов, она обеспечивает мощность в два раза большую в сравнении со схемой полумоста. То есть это получается на одном и том же сердечнике трансформатора. Напряжение питания и допустимые для транзисторов значения силы тока остаются такими же, как и в полумосте. Но амплитуда намагничивающего напряжения получается в два раза больше. Именно полумостовые и мостовые инверторные схемы применены в большинстве современных компьютеров, сварочных аппаратов и т.д. и т.п.

О перспективах развития инверторных систем

Они в некоторых старых моделях работают уже не один десяток лет, являясь эффективной заменой обычного трансформатора. Постепенно, по мере появления все более мощных полупроводниковых приборов, инверторы массово придут в электрические сети. Это будет настоящей революцией в электроснабжении. Вместо трех проводов и переменного тока можно будет использовать постоянный ток с одним-единственным проводом. Экономический эффект получится колоссальным. Ждать осталось не более 10–15 лет, а то и менее…

Что такое инвертор напряжения

Содержание:

Довольно часто возникают ситуации, когда требуется получить переменный ток путем преобразования постоянного тока. Для этих целей существует специальный прибор – инвертор напряжения, в котором находится встроенный микропроцессор, позволяющий автоматически выбрать необходимый режим работы, преобразованием напряжения в сети. Он может постоянное напряжение в 12 или 24 Вольт, которое производит аккумуляторная батарея, преобразовывать в стандартное 220 Вольт для работы большинства электроприборов. Таким образом, инвертор напряжения служит для приборов, использующих стандартную электросеть, бесперебойным источником питания.

Определение инвертора напряжения

Инвертор напряжения, в том числе и сделанный своими руками — неотъемлемая часть различных генераторов, использующих энергию течения или падения воды, силу ветра или солнечное излучение. С помощью него все виды энергии могут преобразовываться в обыкновенные для бытовых приборов параметры напряжения в 220 вольт из напряжения 12В или из трёхфазного. Таким образом, данные приборы выполняют преобразование постоянного напряжения с одной величиной, в переменное напряжение с требуемой величиной.

По своей сути схема инвертора напряжения сама является генератором, с помощью которого можно подобрать и получить периодически изменяющееся напряжение. В отличие от стабилизаторов, выходные напряжения могут иметь синусоидальную, близкую к синусоидальной или импульсную формы. На практике эти устройства используются как самостоятельные устройства, или в качестве какой-то отдельной части в системах бесперебойного электроснабжения.

Пользу смогли оценить по достоинству обитатели регионов, которые испытали веерные отключения электроэнергии. Незаменим автономный инвертор напряжения в условиях стихийных бедствий. Очень важно его присутствие в медицинских и детских учреждениях, для безопасности банков, хранилищ, складов.

Применение инвертора на практике

Выбирая инвертор напряжения, следует помнить, что он поможет и освещение обеспечить при необходимости, и телевизор посмотреть, и даже чайник вскипятить. Для тех, кто вынужден длительное время проводить в дороге, автомобильный инвертор своими руками незаменимое устройство, позволяющее пользоваться обычными бытовыми приборами в поездках.

В большинстве случаев инверторы напряжения используются как запасные фазные источники электропитания. Если ток в розетке пропадает, приборы тут же начинают работать от аккумулятора в обычном режиме. Подача электроэнергии восстановилась — инвертор переходит к зарядке аккумулятора, при этом, не мешая приборам нормально работать от сети. При этом он беспрерывно контролирует ситуацию.

Особую популярность данные устройства приобрели при совместном использовании с компьютерными системами. В этом случае электроснабжение становится непрерывным, даже при внезапном исчезновении сетевого напряжения. В ход идет резервный аккумулятор, обеспечивающий корректное завершение работы и выключение компьютера.

Существуют большие источники бесперебойного питания АИН, оборудованные мощными инверторами с высокой емкостью аккумуляторов. Они способны подавать энергию потребителю в автономном режиме в течение нескольких часов. При возвращении сети в нормальный рабочий режим происходит автоматическое переключение потребителей на нормальное электроснабжение, а аккумуляторы переходят в режим зарядки.

Если же напряжение, которое выдает аккумулятор, падает ниже допустимого предела, в этом случае также начинается его подзарядка. При отсутствии такой возможности — просигнализирует о прекращении подачи электроэнергии и перейдёт в режим ожидания, до возобновления подачи электроэнергии.

Принцип работы инверторных устройств

Современные технологические схемы, связанные с преобразованиями электроэнергии, предполагают использование инверторов в качестве промежуточного звена совместно с другими устройствами. Их основной функцией является преобразование напряжения с высокой частотой трансформации, составляющей несколько десятков или даже сотен килогерц.

Подобная задача с технической точки зрения в настоящее время решается достаточно легко, поскольку принцип работы инверторов основан на полупроводниковых ключах, устойчивых к высоким токам. Специально для этих устройств были разработаны магнитопроводы с нужными параметрами и различные типы электронных микроконтроллеров.

Технические характеристики и физические свойства инверторов примерно такие же, как и у других компонентов, в том числе и силовых устройств. Они отличаются надежностью, высоким коэффициентом полезного действия, минимальной массой и габаритными размерами. Каждый такой прибор должен выдерживать все параметры входного напряжения. Импульсные помехи на выходе находятся в разумных пределах и не создают проблем потребителям.

Схема управления

В каждом инверторе имеются полупроводниковые ключи с обратными шунтирующими диодами в виде моста мостовая схема. Для управления данными элементами используется специальный контроллер. Регулировка и расчет выходного напряжения осуществляется автоматически, в соответствии с мощностью текущей нагрузки. С этой целью изменяется ширина импульса в преобразователе высокой частоты. Данный процесс известен в качестве широтно-импульсной модуляции – ШИМ.

Выходное напряжение низкой частоты отличается симметричными полуволнами за счет постоянной ширины импульса низкочастотного блока.

Выходные ключи инвертора управляются путем специального алгоритма, при котором происходит последовательная смена структур в силовой цепи. За прямой структурой идет короткозамкнутая и далее – инверсная. Таким образом, мгновенная мощность выходной нагрузки инвертора представляет собой пульсации, протекающие с удвоенной частотой. В связи с этим режим работы первичного источника при прохождении через него пульсирующих токов, должен учитывать расчет определенных помех, образующихся на входе инвертора.

Основные типы преобразователей

Все преобразователи напряжения с 12 до 220В разделяются на несколько типов:

Все инверторы имеют три рабочих режима – пусковой, длительный и перегрузочный. В первом случае мощность нагрузки лишь на доли секунды в два раза превышает номинал устройства. Во втором случае нагрузка соответствует номиналу выбранного прибора. В режиме перегрузки расчет мощности подключенных потребителей может быть выше номинала в 1.3 раза. Подобный режим модель среднего инвертора выдерживает около 30 минут.

Форма выходного напряжения

В разных инверторах напряжение на выходе отличается по форме. Если это прямоугольник, то расчет коммутации группы ключей, дополненных обратными диодами, осуществляется таким образом, чтобы на нагрузке возникло переменное напряжение и обеспечивался контроль над режимом циркуляции в цепях реактивной энергии.

Выходное напряжение становится пропорциональным за счет относительной продолжительности импульсов управления или между сигналами, управляющими группами ключей, сдвигаются фазы. Если же циркуляция реактивной энергии находится вне зоны контроля, в этом случае величина и форма напряжения находятся под непосредственным влиянием потребителя.

Преобразователь напряжения, имеющий на выходе ступенчатую форму, с помощью предварительного преобразователя высокой частоты, производит формирование ступенчатой однополярной кривой напряжения. По своей форме она приближена к синусоиде, у которой полный период составляет половину периода напряжения на выходе. Далее, под влиянием низкочастотной мостовой схемы однополярная ступенчатая кривая становится двумя стабилизированными половинками кривой с разной полярностью, форма которой приблизительно напоминает синусоиду.

Напряжение холостого хода в сварочных инверторах

При использовании преобразующих устройств в практических целях, встречается такое понятие, как напряжение холостого хода сварочного инвертора. Данное состояние образуется за счет изменения напряжения 220 или 380 вольт с частотой 50 Гц, то есть может использоваться и трехфазный инвертор напряжения. Вначале оно становится напряжением постоянного тока, а затем вновь превращается в переменное, но уже с высокой частотой на выходе – в пределах 20-50 кГц.

Далее осуществляется расчет и подача этого высокочастотного напряжения к регулятору. Данный элемент поддерживает нужный уровень тока и напряжения, необходимых для зажигания дуги. Напряжение холостого хода не опасно при случайном касании токоведущих частей во время работы со сваркой, тогда как завышенное напряжение может вызвать серьезные негативные последствия.

Инвертор напряжения ⋆ diodov.net

Автор: Дмитрий Забарило Школа электроники

С развитием альтернативных источников энергии, в частности с массовым внедрением солнечных панелей, инвертор напряжения находит все более широкое применение. Поскольку применяется как постоянный, так и переменный ток, то часто возникает необходимость в преобразовании энергии одного рода в другой. Устройства, преобразующие переменный ток в постоянный называются выпрямителями. В качестве выпрямителя чаще всего применяют диодный мост. А устройство, преобразующее постоянный ток в переменный называют инвертором.

По ряду положительный свойств большую популярность завоевал инвертор напряжения. Особенно широко он используется с целью преобразования электрической энергии постоянного тока аккумуляторной, солнечной батареи или суперконденсатор в переменное напряжение 230 В, 50 Гц для питания большинства промышленных устройств.

Принцип работы инвертора напряжения

Представим, что у нас имеется источник электрической энергии постоянного тока такой, как аккумулятор или гальванический элемент и потребитель (нагрузка), который работает только от переменного напряжения. Как преобразовать один вид энергии в другой? Решение было найдено довольно просто. Достаточно подключить аккумулятор к потребителю сначала одной полярностью, а затем через короткий промежуток отключить аккумулятор, а потом снова подключить, но уже обратной полярностью. И такие переключения повторять все время через равные промежутки времени. Если выполнять таких переключений 50 раз за секунду, то на потребитель будет подаваться переменное напряжение частотой 50 Гц. Роль переключателей чаще всего выполняют транзисторы или тиристоры, работающие в ключевом режиме.

На схеме, приведенной ниже, изображен источника питания Uип с клеммами 1-2 и потребитель RнLн, обладающий активно-индуктивным характером, с клеммами 3-4. В один момент времени потребитель клеммами 3-4 подключается к клеммам 1-2 Uип, при этом I от Uип протекает в направлении LнRн, а в следующий момент клеммы 3-4 изменяют свое положение и I протекает в противоположном направлении относительно потребителя электрической энергии.

Схема инвертора напряжения

Наиболее распространённая схема инвертора напряжения состоит из четырех IGBT транзисторов VT1…VT4, включенных по схеме моста, и четырех обратных диодов, обозначенных VD1…VD4, параллельно соединенных с управляемыми полупроводниковыми ключами во встречном направлении. Преобразователь питает активно-индуктивную нагрузку. Именно она является самой распространенной, поэтому была взята за основу.

Входные клеммы инвертора подключаются к Uип. Если таким источником служит диодный выпрямитель, то выход его обязательно шунтируется конденсатором C.

В силовой электронике наибольшее применение нашли транзисторы с изолированным затвором IGBT (именно они показаны на схеме) и GTO, IGCT тиристоры. При оперировании меньшими мощностями вне конкуренции полевые транзисторы MOSFET.

В момент времени t1 открываются VT1 и VT4, а VT2 и VT3 – закрыты. Образуется единственный путь для протекания тока через нагрузку: «+» Uип – VT1 – нагрузка RнLн – VT4 – «-» Uип. Таким образом, на интервале времени t1 ‑ t2 создается замкнутая цепь для протекания iн в соответствующем направлении.

Режим работы схемы

Для изменения направления iн снимаются управляющие импульсы с баз VT1 и VT4 и подаются сигналы на открытие второго и третьего VT2,3. В точке t2 на оси времени t, первый и четвертый VT1,4 закрыты, а второй и третий – открыты. Однако, поскольку нагрузка активно-индуктивная, то iн не может мгновенно изменить направление на противоположное. Этому будет препятствовать энергия, запасенная на индуктивности Lн. Поэтому он будет сохранять прежнее направление до тех пор, пока не рассеется все энергия, запасенная на индуктивности в виде магнитного поля, равная Wм = (Lн∙i2)/2.

В связи с этим, на отрезке времени t2 – t3 ток будет протекать через диоды VD2 и VD3, сохраняя прежнее направление на RнLн, но пройдет в обратном направлении через Uип или конденсатор C, если источником энергии является диодный выпрямитель. Поэтому следует обязательно установить конденсатор C, если преобразователь подключен к диодному выпрямителю. Иначе прервется путь протекания iн, в результате чего возникнут сильное перенапряжение, которое может повредить изоляцию потребителя и выведет из строя полупроводниковые приборы.

В момент времени t3 вся запасенная на индуктивности энергия снизится до нуля. Начиная с момента t3 до момента t4 под действием приложенного Uип через открытые полупроводниковые ключи VT2 и VT3 будет протекать iн через LнRн уже в другую сторону.

В точке t4, расположенной на оси времени t, снимается управляющий сигнал с VT1,3, а VT1 и VT4 открываются. Однако iн продолжает протекать в ту же сторону, пока не расходуется энергия, запасенная в индуктивности. Это будет происходить на интервале времени t4 – t5.

Работа схемы

Начиная с момента t5 iн изменить направление и потечет от Uип через LнRн по пути через VT1 и VT4. Далее все процессы, протекающие в электрической цепи, будут повторяться. На LнRн форма напряжения будет прямоугольной, но ток на активно-индуктивной нагрузке будет иметь пилообразную форму за счет наличия индуктивности, которая не позволяет ему мгновенно вырасти и снизиться. Если потребитель имеет чисто активный характер (индуктивность и емкость практически равны нулю), то формы iн и uн будет в виде прямоугольников.

Поскольку VT1…VT4 попарно открывались на всей протяженности соответствующих полупериодов, то на выходе преобразователя формировалось максимально возможное uн, поэтому через LнRн протекал iн максимальной величины. Однако часто требуется обеспечить плавное нарастание мощности на потребителе, например для постепенного увеличения яркости освещения или частоты вращения вала двигателя.

Следует пояснить, что сигналы, поступающие из системы управления СУ, подаются не сразу на базы полупроводниковых ключей, а посредством драйвера. Так как современные СУ построены на безе микроконтроллеров, которые выдают маломощные сигналы, не способные открыть IGBT, то для увеличения мощности открывающего импульса применяется промежуточное звено – драйвер. Кроме того на часто драйвер выполняет множество дополнительных функций – защищает транзистор от короткого замыкания, перегрева и т.п.

Инвертор напряжения с регулированием выходных параметров

Самый простой способ изменить величину uн заключается в регулировании величины подводимого Uип, если такая возможность имеется. Например, для регулируемого выпрямителя это не проблема. Но такие источники электрической энергии как аккумуляторная батарея, суперконденсатор или солнечная батарея не имеют данной возможности. Поэтому регулировка частоты и величины выходного uн полностью возлагается на инвертор.

Для регулирования величины uн одну пару диагонально противоположных транзисторов следует открыть несколько ранее, чем в рассмотренном выше случае. Поэтому алгоритмом системы управления следует предусмотреть сдвигу управляющих сигналов. Например, подаваемых на открытие VT1 и VT4 относительно импульсов управления, подаваемых на базы VT2 и VT3, на некоторый угол, называемый углом управления α.

Обратите внимание, что амплитудное значение uн остается неизменной величины и приблизительно равно значению Uип, но действующее значение uн будет снижаться по мере увеличения угла управления α. Рассмотрим, как это работает.

На интервале времени от t1 до t2 открыта пара транзисторов VT1 и VT4; iн протекает справа налево, как показано на схеме. В момент t2 закрывается первый транзистор и открывается второй. Ток сохраняет прежнее направление, а нагрузка оказывается замкнутой, в результате чего напряжение на ней падает практически до нуля, соответственно снижается и iн.

Далее из системы управления поступает команда и VT2 открывается, а VT4 закрывается. Однако накопленная в индуктивности энергия не позволяет току iн изменить свое направление, и он протекает по прежней цепи, только уже через диоды VD2 и VD3 встречно источнику питания. Длительность этого процесса продолжается до точки времени t4. В точке t4 под действием приложенного Uип iн изменяет знак на противоположный.

Широтно-импульсная модуляция

Такой алгоритм работы полупроводниковых ключей в отличие от предыдущего алгоритма формирует паузу определенной длительности, которая в конечном итоге приводит к снижению действующего значения uн. Для формирования iн синусоидальной формы применяется широтно-импульсная модуляция ШИМ. Преобразователь с ШИМ, а точнее алгоритм его работы, предусматривающий ШИМ, мы рассмотрим отдельно.

Также следует заметить, что рассмотренный алгоритм управления полупроводниковыми ключами называется широтно-импульсным регулированием ШИР, который часто путают с ШИМ, хотя разница огромная.

В преобразовательной технике ШИМ практически вытеснила ШИР, поскольку обладает рядом положительных свойств, благодаря которым повышается КПД всего устройства и снижается уровень электромагнитных помех. Поэтому в дальнейшем мы рассмотрим инвертор напряжения с ШИМ.

Для чего нужен инвертор (преобразователь напряжения) и как выбрать

Все они очень сильно различаются по функциональным возможностям и техническим характеристикам. Чтобы выбрать инвертор, нужно разобраться в технических характеристиках данных устройств, и только после этого определиться с покупкой конкретной модели данного устройства.

Инверторы, представленные на Российском рынке, очень сильно отличаются по цене, от самых бюджетных моделей в одну – две тысячи рублей, и до нескольких десятков тысяч, за устройства той же мощности. Главным отличием преобразователей напряжения является форма выходного напряжения. Есть устройства, на выходе которых получается напряжение синусоидальной формы, как их еще называют инверторы с чистым синусом, и преобразователи напряжения формой выходного напряжения, которых является модифицированный синус (квази-синус). Первые устройства стоят гораздо дороже, чем преобразователи с квази-синусом, и разница в цене колоссальная.

Преобразователи напряжения с модифицированной синусоидой, их еще часто называют автомобильные инверторы, позволяют подключать не слишком точное оборудование, не имеющее электроники и схем управления, например дрель, болгарка, лампочки и другие устройства подобного рода. Они имеют достаточно низкий КПД и большое потребление тока на собственные нужды, и по большей части рассчитанные на непродолжительное время непрерывной работы.

Инверторы с чистым синусом позволяют подключать любые устройства, так как имеют на выходе правильную форму напряжения, что позволяет без риска выхода из строя подключать любое оборудование и устройства, поэтому чаще всего именно эти инверторы и используются в домах для организации резервного питания. К ним можно подключать насосы, энергозависимые котлы отопления с электроникой, современные холодильники и другую бытовую технику. Не оказывая негативного влияния на ее работу. Часто эти устройства совмещают в себе функции источника бесперебойного питания (ИБП) и инвертора. Т.е. при отключении центральной электросети, автоматически за доли секунд переводят работу подключенных к нему устройств на питание от аккумуляторных батарей. Не прерывая при этом работу подключенных устройств.

Кроме того, помимо формы выходного напряжения, инверторы отличаются по мощности подключаемых к ним устройств, что является не менее важной характеристикой. Поэтому стоит заранее рассчитать мощность всего оборудования, которое планируется питать от инвертора. Она не должна превышать номинальное напряжение инвертора, а лучше чтобы она была меньше на 15-20 процентов. Это позволит продлить срок службы инвертора, т.к. он не будет работать на предельных режимах. Так же стоит обратить внимание на дополнительные функции, такие, например, как спящий режим, который позволит увеличить время автономной работы и другие особенности конкретной модели.

Производителей инверторов тоже большое количество, и перед покупкой стоит изучить отзывы и узнать наличие ближайших сервисных центров и условий гарантийного обслуживания конкретных инверторов. Большая часть инверторов отечественного и китайского производства, есть достойные моделей и у тех и у других. Но не всегда модели с русским названием производятся в России, часто они так же собираются в Китае.

Все больше людей приобретают инверторы в качестве автономных и резервных источников питания, чтобы обезопасить себя от частых отключений электроэнергии, а так же получения электричества 220В на объектах не подключенных к центральной сети, но где оно необходимо в определенные моменты времени, используя аккумуляторные батареи.

Компания ИК ЭнергоПартнер предлагает большой выбор инверторов различных типов и модификаций, от автомобильных инверторов малой мощности, до инверторов с чистым синусом, большой мощности,  множеством дополнительных функций и настроек. Все устройства сертифицированы, имеют гарантию и широкую сеть сервисных центров по всей территории РФ. Так же вы можете подобрать и аккумуляторные батареи различных типов ля подключения к инвертору.


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.