Хорда в геометрии что это такое
Хорда (геометрия) - это... Что такое Хорда (геометрия)?
1 — секущая, 2 — хорда AB (отмечена красным цветом), 3 — сегмент (отмечен зеленым цветом), 4 — дуга
Хорда в планиметрии — отрезок прямой линии, соединяющей две точки данной кривой (например, окружности, эллипса, параболы).
Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегмент.
Хорда, проходящая через центр окружности, называется диаметр. Диаметр — это самая длинная хорда в окружности.
Свойства хорд
- Хорды являются равноудаленными от центра окружности тогда и только тогда, когда они равны по длине.
- Перпендикуляр с середины хорды окружности проходит через центр этой окружности.
- Радиус, перпендикулярный к хорде, делит эту хорду пополам.
- Дуги, заключенные между равными хордами, равны.
- Дуги, заключенные между параллельными хордами, равны.
- При пересечении двух хорд окружности, получаются отрезки, произведение которых у одной хорды равно произведению отрезков другой хорды.
Основные формулы
Длина хорды:
Связанные понятия и утверждения
- Касательная
- Диаметр
- Теорема Сальмона
Ссылки
- Справочник. Окружности. Архивировано из первоисточника 3 декабря 2012.
Что называется хордой окружности в математике и геометрии: определение, основные свойства
Главная > Наука > Математика > Что такое хорда окружности в геометрии, её определение и свойства
Хорда в переводе с греческого означает «струна». Это понятие широко применяется в разных областях науки — в математике, биологии и других.
В геометрии для термина определение будет следующим: это отрезок прямой линии, который соединяет между собой две произвольные точки на одной окружности. Если такой отрезок пересекает центр кривой, она называется диаметром описываемой окружности.
...
Вконтакте
Facebook
Twitter
Google+
Мой мир
Оглавление:
- Как построить геометрическую хорду
- Свойства
- Взаимосвязь с радиусом и диаметром
- Хорда и радиус
- Отношения со вписанными углами
- Взаимодействия с дугой
Как построить геометрическую хорду
Чтобы построить этот отрезок, прежде всего необходимо начертить круг. Обозначают две произвольные точки, через которые проводят секущую линию. Отрезок прямой, который располагается между точками пересечения с окружностью, называется хордой.
Это интересно: в геометрии луч — это что такое, основное понятие.
Если разделить такую ось пополам и из этой точки провести перпендикулярную прямую, она будет проходить через центр окружности. Можно провести обратное действие — из центра окружности провести радиус, перпендикулярный хорде. В этом случае радиус разделит её на две идентичные половины.
Если рассматривать части кривой, которые ограничиваются двумя параллельными равными отрезками, то эти кривые тоже будут равными между собой.
Свойства
Существует ряд закономерностей, связывающих между собой хорды и центр круга:
- Если расстояния от хорд до центра равны между собой, то такие хорды тоже равны между собой.
- Существует также обратная зависимость — если длины отрезков равны между собой, то расстояния от них до центра тоже будут равными.
- Чем большую длину имеет стягивающий отрезок прямой, тем меньше расстояние от него до центра окружности. И наоборот, чем она меньше, чем расстояние от указанного отрезка до центра описываемого круга больше.
- Чем больше расстояние от «струны» до центра, тем меньше длина этой оси. Справедливой будет также и обратная взаимосвязь — чем меньше расстояние от центра до хорды, тем больше длина.
- Хорда в геометрии, которая имеет максимально возможную для этой окружности длину, называется диаметром круга. Такая ось проходит через центр и делит её на две равные части.
- Отрезок с наименьшей длиной представляет собой точку.
- Если ось представляет собой точку, то расстояние от неё до центра круга будет равняться радиусу.
Это интересно: разность векторов, определение разности.
Взаимосвязь с радиусом и диаметром
Вышеуказанные математические понятия связаны между собой следующими закономерностями:
- Если описываемый отрезок не является диаметром этого круга, и этот диаметр делит его пополам, то эта ось и диаметр перпендикулярны между собой.
- С другой стороны, диаметр, который перпендикулярен любой произвольной стягивающей, делит её на две равные части.
- Если ось не является диаметром, и последний делит её на две равные части, то он делит пополам и обе дуги, которые стянуты этим отрезком.
- Если диаметр делит на две одинаковые части дугу, то этот же диаметр делит пополам отрезок, который эту дугу стягивает.
- Если диаметр строго перпендикулярен описываемой величине, то он делит на две половины каждую дугу, которую ограничивает эта линия.
- Если диаметр круга делит пополам отрезок кривой, то он располагается перпендикулярно оси, которая этот отрезок стягивает.
Хорда и радиус
Между этими понятиями существуют следующие связи:
- Если стягивающий отрезок не служит диаметром круга, и радиус разделяет её пополам, то такой радиус является перпендикулярным ей.
- Существует также обратная зависимость — радиус, который перпендикулярен оси, делит её на две одинаковые составные части.
- Если ось не выступает диаметром этого круга, и радиус делит её пополам, то этот же радиус делит пополам и дугу, которая стягивается.
- Радиус, который делит пополам дугу, также делит и отрезок, который эту дугу стягивает.
- Если радиус является перпендикулярным стягивающей линии, то он делит пополам часть кривой, которую она ограничивает.
- Если радиус окружности разделяет на две идентичные части дугу, то он является перпендикулярным линии, которая эту дугу стягивает.
Отношения со вписанными углами
Углы, вписанные в окружность, подчиняются следующим правилам:
- Если углы, вписанные в окружность, опираются на одну и ту же линию, и их вершины расположены по одну сторону, то такие углы равны между собой.
- Если два вписанных в круг угла опираются на одну и ту же линию, но их вершины расположены по разные стороны этой прямой, то сумма таких углов будет равняться 180 градусам.
- Если два угла — центральный и вписанный — опираются на единую линию, и их вершины располагаются по одну сторону от неё, то величина вписанного угла будет равняться половине центрального.
- Вписанный угол, который опирается на диаметр круга, является прямым.
- Равные между собой по размеру отрезки стягивают равные центральные углы.
- Чем больше величина стягивающего отрезка, тем больше величина центрального угла, который она стягивает. И наоборот, меньшая по размеру линия стягивает меньший центральный угол.
- Чем больше центральный угол, тем больше величина отрезка прямой, который его стягивает.
Взаимодействия с дугой
Если два отрезка стягивают участки кривой, одинаковые по размеру, то такие оси равны между собой. Из этого правила вытекают следующие закономерности:
- Две равные между собой хорды стягивают равные дуги.
- Если рассматривать две дуги, размер которых меньше половины окружности, то чем больше дуга, тем больше хорда, которая будет её стягивать. Напротив, меньшая дуга будет стягиваться меньшей по величине хордой.
- Если же дуга превышает половину окружности, то здесь присутствует обратная закономерность: чем меньше дуга, тем больше хорда, которая её стягивает. И чем больше дуга, тем меньше ограничивающая её хорда.
Хорда, которая стягивает ровно половину окружности, является её диаметром. Если две линии на одной окружности параллельны между собой, то будут равными и дуги, которые заключены между этими отрезками. Однако не следует путать заключённые дуги и стягиваемые теми же линиями.
Отзывы и комментарии
Хорда это в геометрии
Хорда в геометрии считается отрезком прямой линии, которая соединяет две точки, лежащие на заданной кривой (например, на окр-сти, эллипсе, параболе). Если для заданной кривой провести секущую, то хорда будет лежать на этой секущей.
Секущая – это прямая, которая пересекает кривую в двух точках или больше.
На рисунке цифрой 1 обозначена секущая, которая пересекает окружность в двух точках – А и В, цифрой 2 обозначена хорда, которая принадлежит секущей и соединяет две точки окр-сти (А и В), цифрой 3 обозначен сегмент окр-сти (плоская фигура, которая получается в результате пересечения хорды и окр-сти), а цифрой 4 – дуга окружности.

Если провести хорду через центр окр-сти, то длина хорды будет самой большой, а такая хорда будет называться диаметром окр-сти.
Хорды имеют несколько полезных свойств, которые помогут в решении геометрических задач.
Если хорды находятся на одинаковом расстоянии от центра окр-сти только в том случае, когда их длины равны. Если провести из середины хорды окр-сти перпендикуляр, то он пройдет через центр данной окр-сти. Если радиус окр-сти перпендикулярный к хорде, то он разделит данную хорду на два равных отрезка. Между равными хордами заключены равные дуги.
Между парал-ными хордами заключены равные дуги.
Хорда окружности - это... Что такое Хорда окружности?
Хорда — В Викисловаре есть статья «хорда» Хорда: Хорда окружности в планиметрии отрезок прямой линии, соединяющей две точки данной кривой (круг … Википедия
ХОРДА — (греч. chorde). В геометрии: прямая линия, соединяющая концы дуги. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ХОРДА 1) в геометрии прямая линия, соединяющая две какие нибудь точки окружности, но не проходящая… … Словарь иностранных слов русского языка
ХОРДА — ХОРДА, хорды, жен. (греч. chorde струна). 1. Прямая, соединяющая две точки какой н кривой линии, напр. концы дуги окружности (мат.). 2. Осевой скелет, упругий эластичный тяж, спинная струна (лат. chorda dorsalis у некоторых животных (напр. рыб, т … Толковый словарь Ушакова
ХОРДА 1 — ХОРДА 1, ы, ж. В математике: прямая, соединяющая две точки кривой, напр. дуги, окружности. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
хорда — ХОРДА, ы, жен. В математике: прямая, соединяющая две точки кривой, напр. дуги, окружности. II. ХОРДА, ы, жен. (спец.). Спинная струна первичная скелетная ось у высших животных и человека. | прил. хордовый, ая, ое. Тип хордовых (сущ.; тип высших… … Толковый словарь Ожегова
Хорда (геометрия) — У этого термина существуют и другие значения, см. Хорда. 1 секущая, 2 хорда … Википедия
ХОРДА — (от греч. chorde струна) отрезок прямой, соединяющий 2 точки к. л. кривой линии, например окружности … Большой энциклопедический политехнический словарь
Фокальная хорда — Кривая второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0, в котором по крайней мере один из коэффициентов отличен от нуля.… … Википедия
Парадокс Бертрана (вероятность) — Для термина «Парадокс Бертрана» см. другие значения. Парадокс Бертрана проблема классического определения теории вероятностей. Жозеф Бертран описал парадокс в своей работе Calcul des probabilités (1888) в качестве примера того, что вероятность не … Википедия
ГОСТ 16531-83: Передачи зубчатые цилиндрические. Термины, определения и обозначения — Терминология ГОСТ 16531 83: Передачи зубчатые цилиндрические. Термины, определения и обозначения оригинал документа: 5.3.1. Воспринимаемое смещение Разность межосевого расстояния цилиндрической зубчатой передачи со смещением и ее делительного… … Словарь-справочник терминов нормативно-технической документации
Свойства хорды в окружности, с примерами
Онлайн калькуляторы
На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.
Справочник
Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!
Заказать решение
Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!
Хорда является частью секущей окружности.
Свойства хорды
- Хорды, равноудаленные от центра окружности, равны.
- Хорды окружности равны, если они стягивают равные центральные углы.
- Если диаметр перпендикулярен хорде, то он проходит через ее середину.
- Вписанные углы, опирающиеся на одну хорду, равны.
- Дуги, заключенные между двумя равными хордами, равны.
- Любая пара вписанных углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180°:
- Если хорда стягивает дугу с градусной мерой , то ее длина
- Для любых двух хорд и , пересекающихся в точке О, выполняется:
Примеры решения задач
Понравился сайт? Расскажи друзьям! | |
|
Хорда
Развернуть структуру обучения | Свернуть структуру обучения | | Хорда - это отрезок, который соединяет две точки заданной кривой. Хорда может быть у дуги, окружности, эллипса и т.д. На рисунке хорда обозначена как отрезок AB красного цвета . Оба его конца находятся на окружности Часть кривой, заключенной между двумя точками хорды, называется дугой. На рисунке дуга хорды AB обозначена зеленым цветом . Плоская фигура, заключенная между дугой и ее хордой называется сегментом. Сегмент на рисунке ограничен красным отрезком AB с одной стороны, и зеленой дугой - с другой стороны. Хорда, проходящая через центр окружности, называется диаметром окружности. Диаметр окружности - самая длинная хорда окружности. - Если расстояния от центра окружности до хорд равны, то эти хорды равны. Верно и обратное - если хорды равны, то расстояния от центра окружности до этих хорд равны
- Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше. Верно и обратное
- Наибольшая возможная хорда является диаметром
- Серединный перпендикуляр к хорде проходит через центр окружности
- Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде. Верно и обратное - если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам
- Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам. Верно и обратное - если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу
- Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде. Верно и обратное - если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам
- Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное - если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
- Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам. Верно и обратное - если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.
На рисунке [1] вписанный угол обозначен обозначен как ACB, хорда окружности - AB - Если вписанные углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то эти углы равны.
- Если пара вписанных углов опирается на одну и ту же хорду и вершины этих углов лежат по разные стороны этой хорды, то сумма этих углов равна 180°.
- Если вписанный и центральный углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то вписанный угол равен половине центрального угла.
- Если вписанный угол опирается на диаметр, то этот угол является прямым.
На рисунке [2] центральный угол обозначен как AOB, хорда как AB. - Если хорды стягивают равные центральные углы, то эти хорды равны.
- Если хорды равны, то эти хорды стягивают равные центральные углы.
- Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
- Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.
Обозначения в формулах: l - длина хорды α - величина центрального угла R - радиус окружности d - длина перпендикуляра, проведенного от центра окружности к хорде Длина хорды окружности равна удвоенному радиусу данной окружности, умноженному на синус половины центрального угла. Сумма квадрата половины длины хорды и квадрата перпендикуляра, проведенного к этой хорде, равна квадрату радиуса окружности. Данная формула следует из теоремы Пифагора. Примечание. Если Вы не нашли решение подходящей задачи, пишите об этом в форуме. Наверняка, курс геометрии будет дополнен. Задача. Хорды АВ и СD пересекаются в точке S, при чем AS:SB = 2:3, DS = 12см, SC = 5см, найти АВ. | Решение. Поскольку соотношение AS:SB = 2:3 , то пусть длина AS = 2x, SB = 3x Согласно свойству хорд AS x SB = CS x SD, тогда 2х * 3х = 5 * 12 6х2 = 60 х2 = 10 x = √10 Откуда AB = AS + SB AB = 2√10 + 3√10= 5√10 Ответ: 5√10 Задача. Окружность разделена на части, которые относятся как 3,5:5,5:3 и точки деления соединены между собой. Определить величину углов образовавшегося треугольника. | Решение. Обозначим коэффициент пропорциональности дуг окружности, как х. Соединим центры окружности с концами дуг. Поскольку центральный угол равен градусной мере дуги, на которую опирается, то соотношение центральных углов окружности будет равно соотношению ее частей (дуг). Поскольку градусная мера окружности равна 360 градусам, то 3,5х + 5,5х + 3х = 360 12х = 360 х = 30 Откуда градусные величины центральных углов равны: 3 * 30 = 90 3,5 *30 = 105 5,5 *30 = 165 Углы образовавшегося треугольника являются углами, вписанными в окружность. Вписанный угол равен половине градусной меры дуги, на которую опирается. Откуда углы треугольника равны: 90 / 2 = 45 105 / 2 = 52,5 165 / 2 = 82,5 Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ; 0 Задачи про окружность | Описание курса | Треугольник (Трикутник) |