Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Гравитация что это такое


Гравитация - это... Что такое Гравитация?

Гравита́ция (притяжение, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырех типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.

Закон всемирного тяготения.

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

Здесь  — гравитационная постоянная, равная примерно 6,6725×10−11 м³/(кг·с²).

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами на космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля

В сильных гравитационных полях, а также при движении в гравитационном поле с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности (ОТО):

Гравитационное излучение

Экспериментально измеренное уменьшение периода обращения двойного пульсара PSR B1913+16 (синие точки) с высокой точностью соответствует предсказаниям ОТО по гравитационному излучению (чёрная кривая).

Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако существуют весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, в знаменитой системе PSR B1913+16 (пульсаре Халса — Тейлора) — хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением.

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами, этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n-польного источника пропорциональна , если мультиполь имеет электрический тип, и  — если мультиполь магнитного типа[1], где v — характерная скорость движения источников в излучающей системе, а c — скорость света. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

где  — тензор квадрупольного момента распределения масс излучающей системы. Константа  (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)), предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA (англ.), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном Центре Гравитационно-Волновых Исследований «Дулкын»[2] республики Татарстан.

Тонкие эффекты гравитации

Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и их обнаружение и экспериментальная проверка поэтому весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters[3]. Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения — −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год).

Классические теории гравитации

См. также: Теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая[4] классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина объектов[5]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к ОТО в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.

Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля[6].

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского[7]. Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

Основная статья: Квантовая гравитация

Несмотря на более чем полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема, и поэтому считается неудовлетворительной.

В последние десятилетия разработаны три перспективных подхода к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и причинная динамическая триангуляция.

Теория струн

Основная статья: Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория.

Петлевая квантовая гравитация

Основная статья: Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.

Причинная динамическая триангуляция

Основная статья: Причинная динамическая триангуляция

В ней пространственно-временное многообразие строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) размеров порядка планковских с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

См. также

Примечания

Гравитация - что это такое? Сила гравитации. Гравитация Земли

Человечество издревле задумывалось о том, как устроен окружающий мир. Почему растет трава, почему светит Солнце, почему мы не можем летать… Последнее, кстати, всегда особенно интересовало людей. Сейчас мы знаем, что причина всему - гравитация. Что это такое, и почему данное явление настолько важно в масштабах Вселенной, мы сегодня и рассмотрим.

Вводная часть

Ученые выяснили, что все массивные тела испытывают взаимное притяжение друг к другу. Впоследствии оказалось, что эта таинственная сила обуславливает и движение небесных тел по их постоянным орбитам. Саму же теорию гравитации сформулировал гениальный Исаак Ньютон, чьи гипотезы предопределили развитие физики на много веков вперед. Развил и продолжил (хотя и в совершенно другом направлении) это учение Альберт Эйнштейн - один из величайших умов минувшего века.

На протяжении столетий ученые наблюдали за притяжением, пытались понять и измерить его. Наконец, в последние несколько десятилетий поставлено на службу человечеству (в определенном смысле, конечно же) даже такое явление, как гравитация. Что это такое, каково определение рассматриваемого термина в современной науке?

Научное определение

Если изучить труды древних мыслителей, то можно выяснить, что латинское слово «gravitas» означает «тяжесть», «притяжение». Сегодня ученые так называют универсальное и постоянное взаимодействие между материальными телами. Если эта сила сравнительно слабая и действует только на объекты, которые движутся значительно медленнее скорости света, то к ним применима теория Ньютона. Если же дело обстоит наоборот, следует пользоваться эйнштейновскими выводами.

Сразу оговоримся: в настоящее время сама природа гравитации до конца не изучена в принципе. Что это такое, мы все еще полностью не представляем.

Теории Ньютона и Эйнштейна

Согласно классическому учению Исаака Ньютона, все тела притягиваются друг к другу с силой, прямо пропорциональной их массе, обратно пропорциональной квадрату того расстояния, которое пролегает между ними. Эйнштейн же утверждал, что тяготение между объектами проявляется в случае искривления пространства и времени (а кривизна пространства возможна только в том случае, если в нем имеется материя).

Мысль эта была очень глубокой, но современные исследования доказывают ее некоторую неточность. Сегодня считается, что гравитация в космосе искривляет только лишь пространство: время можно затормозить и даже остановить, но реальность изменения формы временной материи теоретически не подтверждена. А потому классическое уравнение Эйнштейна не предусматривает даже шанса на то, что пространство будет продолжать влиять на материю и на возникающее магнитное поле.

В большей степени известен закон гравитации (всемирного тяготения), математическое выражение которого принадлежит как раз-таки Ньютону:

\[ F = γ \frac[-1.2]{m_1 m_2}{r^2} \]

Под γ понимается гравитационная постоянная (иногда используется символ G), значение которой равно 6,67545×10−11 м³/(кг·с²).

Взаимодействие между элементарными частицами

Невероятная сложность окружающего нас пространства во многом связана с бесконечным множеством элементарных частиц. Между ними также существуют различные взаимодействия на тех уровнях, о которых мы можем только догадываться. Впрочем, все виды взаимодействия элементарных частиц между собой значительно различаются по своей силе.

Самые мощные из всех известных нам сил связывают между собой компоненты атомного ядра. Чтобы разъединить их, нужно потратить поистине колоссальное количество энергии. Что же касается электронов, то они «привязаны» к ядру только лишь обыкновенным электромагнитным взаимодействием. Чтобы его прекратить, порой достаточно той энергии, которая появляется в результате самой обычной химической реакции. Гравитация (что это такое, вы уже знаете) в варианте атомов и субатомных частиц является наиболее легкой разновидностью взаимодействия.

Гравитационное поле в этом случае настолько слабо, что его трудно себе представить. Как ни странно, но за движением небесных тел, чью массу порой невозможно себе вообразить, «следят» именно они. Все это возможно благодаря двум особенностям тяготения, которые особенно ярко проявляются в случае больших физических тел:

Формирование более-менее стройной теории гравитации произошло сравнительно недавно, и именно по результатам многовековых наблюдений за движением планет и прочими небесными телами. Задача существенно облегчалась тем, что все они движутся в вакууме, где просто нет других вероятных взаимодействий. Галилей и Кеплер - два выдающихся астронома того времени, своими ценнейшими наблюдениями помогли подготовить почву для новых открытий.

Но только великий Исаак Ньютон смог создать первую теорию гравитации и выразить ее в математическом отображении. Это был первый закон гравитации, математическое отображение которого представлено выше.

Выводы Ньютона и некоторых его предшественников

В отличие от прочих физических явлений, которые существуют в окружающем нас мире, гравитация проявляется всегда и везде. Нужно понимать, что термин «нулевая гравитация», который нередко встречается в околонаучных кругах, крайне некорректен: даже невесомость в космосе не означает, что на человека или космический корабль не действует притяжение какого-то массивного объекта.

Кроме того, все материальные тела обладают некой массой, выражающейся в виде силы, которая к ним была приложена, и ускорения, полученного за счет этого воздействия.

Таким образом, силы гравитации пропорциональны массе объектов. В числовом отношении их можно выразить, получив произведение масс обоих рассматриваемых тел. Данная сила строго подчиняется обратной зависимости от квадрата расстояния между объектами. Все прочие взаимодействия совершенно иначе зависят от расстояний между двумя телами.

Масса как краеугольный камень теории

Масса объектов стала особым спорным пунктом, вокруг которого выстроена вся современная теория гравитации и относительности Эйнштейна. Если вы помните Второй закон Ньютона, то наверняка знаете о том, что масса является обязательной характеристикой любого физического материального тела. Она показывает, как будет вести себя объект в случае применения к нему силы вне зависимости от ее происхождения.

Так как все тела (согласно Ньютону) при воздействии на них внешней силы ускоряются, именно масса определяет, насколько большим будет это ускорение. Рассмотрим более понятный пример. Представьте себе самокат и автобус: если прикладывать к ним совершенно одинаковую силу, то они достигнут разной скорости за неодинаковое время. Все это объясняет именно теория гравитации.

Каково взаимоотношение массы и притяжения?

Если говорить о тяготении, то масса в этом явлении играет роль совершенно противоположную той, которую она играет в отношении силы и ускорения объекта. Именно она является первоисточником самого притяжения. Если вы возьмете два тела и посмотрите, с какой силой они притягивают третий объект, который расположен на равных расстояниях от первых двух, то отношение всех сил будет равно отношению масс первых двух объектов. Таким образом, сила притяжения прямо пропорциональна массе тела.

Если рассмотреть Третий закон Ньютона, то можно убедиться, что он говорит точно о том же. Сила гравитации, которая действует на два тела, расположенных на равном расстоянии от источника притяжения, прямо зависит от массы данных объектов. В повседневной жизни мы говорим о силе, с которой тело притягивается к поверхности планеты, как о его весе.

Подведем некоторые итоги. Итак, масса тесно связана с силой и ускорением. В то же время именно она определяет ту силу, с которой будет действовать на тело притяжение.

Особенности ускорения тел в гравитационном поле

Эта удивительная двойственность является причиной того, что в одинаковом гравитационном поле ускорение совершенно различных объектов будет равным. Предположим, что у нас есть два тела. Присвоим одному из них массу z, а другому - Z. Оба объекта сброшены на землю, куда свободно падают.

Как определяется отношение сил притяжения? Его показывает простейшая математическая формула - z/Z. Вот только ускорение, получаемое ими в результате действия силы притяжения, будет абсолютно одинаковым. Проще говоря, ускорение, которое тело имеет в гравитационном поле, никак не зависит от его свойств.

От чего зависит ускорение в описанном случае?

Оно зависит только (!) от массы объектов, которые и создают это поле, а также от их пространственного положения. Двойственная роль массы и равное ускорение различных тел в гравитационном поле открыты уже относительно давно. Эти явления получили следующее название: «Принцип эквивалентности». Указанный термин еще раз подчеркивает, что ускорение и инерция зачастую эквивалентны (в известной мере, конечно же).

О важности величины G

Из школьного курса физики мы помним, что ускорение свободного падения на поверхности нашей планеты (гравитация Земли) равно 10 м/сек.² (9,8 разумеется, но для простоты расчетов используется это значение). Таким образом, если не принимать в расчет сопротивление воздуха (на существенной высоте при небольшом расстоянии падения), то получится эффект, когда тело приобретает приращение ускорения в 10 м/сек. ежесекундно. Так, книга, которая упала со второго этажа дома, к концу своего полета будет двигаться со скоростью 30-40 м/сек. Проще говоря, 10 м/с – это «скорость» гравитации в пределах Земли.

Ускорение свободного падения в физической литературе обозначается буквой «g». Так как форма Земли в известной степени больше напоминает мандарин, чем шар, значение этой величины далеко не во всех ее областях оказывается одинаковым. Так, у полюсов ускорение выше, а на вершинах высоких гор оно становится меньше.

Даже в добывающей промышленности не последнюю роль играет именно гравитация. Физика этого явления порой позволяет сэкономить много времени. Так, геологи особенно заинтересованы в идеально точном определении g, поскольку это позволяет с исключительной точностью производить разведку и нахождение залежей полезных ископаемых. Кстати, а как выглядит формула гравитации, в которой рассмотренная нами величина играет не последнюю роль? Вот она:

F=G x M1xM2/R2

Обратите внимание! В этом случае формула гравитации подразумевает под G «гравитационную постоянную», значение которой мы уже приводили выше.

В свое время Ньютон сформулировал вышеизложенные принципы. Он прекрасно понимал и единство, и всеобщность силы тяготения, но все аспекты этого явления он описать не мог. Эта честь выпала на долю Альберта Эйнштейна, который смог объяснить также принцип эквивалентности. Именно ему человечество обязано современным пониманием самой природы пространственно-временного континуума.

Теория относительности, работы Альберта Эйнштейна

Во времена Исаака Ньютона считалось, что точки отсчета можно представить в виде каких-то жестких «стержней», при помощи которых устанавливается положение тела в пространственной системе координат. Одновременно предполагалось, что все наблюдатели, которые отмечают эти координаты, будут находиться в едином временном пространстве. В те годы это положение считалось настолько очевидным, что не делалось никаких попыток его оспорить или дополнить. И это понятно, ведь в пределах нашей планеты никаких отклонений в данном правиле нет.

Эйнштейн доказал, что точность измерения окажется действительно значимой, если гипотетические часы движутся значительно медленнее скорости света. Проще говоря, если один наблюдатель, движущийся медленнее скорости света, будет следить за двумя событиями, то они произойдут для него единовременно. Соответственно, для второго наблюдателя? скорость которого такая же или больше, события могут происходить в различное время.

Но как сила гравитации связана с теорией относительности? Раскроем этот вопрос подробно.

Связь между теорией относительности и гравитационными силами

В последние годы сделано огромное количество открытий в области субатомных частиц. Крепнет убеждение, что мы вот-вот найдем окончательную частицу, дальше которой наш мир дробиться не может. Тем настойчивее становится потребность узнать, как именно влияют на мельчайшие «кирпичики» нашего мироздания те фундаментальные силы, которые были открыты еще в прошлом веке, а то и раньше. Особенно обидно, что сама природа гравитации до сих пор не объяснена.

Именно поэтому после Эйнштейна, который установил «недееспособность» классической механики Ньютона в рассматриваемой области, исследователи сосредоточились на полном переосмыслении полученных ранее данных. Во многом пересмотру подверглась и сама гравитация. Что это такое на уровне субатомных частиц? Имеет ли она хоть какое-то значение в этом удивительном многомерном мире?

Простое решение?

Сперва многие предполагали, что несоответствие тяготения Ньютона и теории относительности можно объяснить довольно просто, проведя аналогии из области электродинамики. Можно бы было предположить, что гравитационное поле распространяется наподобие магнитного, после чего его можно объявить «посредником» при взаимодействиях небесных тел, объяснив многие несоответствия старой и новой теории. Дело в том, что тогда бы относительные скорости распространения рассматриваемых сил оказались значительно ниже световой. Так как связаны гравитация и время?

В принципе, у самого Эйнштейна почти получилось построить релятивистскую теорию на основе именно таких взглядов, вот только одно обстоятельство помешало его намерению. Никто из ученых того времени не располагал вообще никакими сведениями, которые бы могли бы помочь определить «скорость» гравитации. Зато имелось немало информации, связанной с перемещениями больших масс. Как известно, они как раз-таки являлись общепризнанным источником возникновения мощных гравитационных полей.

Большие скорости сильно влияют на массы тел, и это ничуть не похоже на взаимодействие скорости и заряда. Чем скорость выше, тем больше масса тела. Проблема в том, что последнее значение автоматически бы стало бесконечным в случае движения со скоростью света или выше. А потому Эйнштейн заключил, что существует не гравитационное, а тензорное поле, для описания которого следует использовать намного больше переменных.

Его последователи пришли к выводу, что гравитация и время практически не связаны. Дело в том, что само это тензорное поле может действовать на пространство, но на время повлиять не в состоянии. Впрочем, у гениального физика современности Стивена Хокинга есть другая точка зрения. Но это уже совсем другая история...

Что такое гравитация

Что такое гравитация (сила тяжести)? Это — это сила, которая притягивает два тела друг к другу, сила, которая заставляет яблоки падать к земле, а планеты вращаться вокруг Солнца. Чем массивнее объект, тем сильнее его гравитационное притяжение.

Фундаментальная сила

Гравитация является одной из четырех фундаментальных сил, наряду с электромагнитными, и сильными и слабыми ядерными взаимодействиями.

Это то, что заставляет предметы иметь вес. Когда вы взвешиваете себя, шкала говорит вам, насколько гравитация действует на ваше тело. На Земле сила тяжести составляет 9,8 метра в секунду в квадрате, или 9,8 м / с 2.

Такие философы, как Аристотель, считали, что более тяжелые предметы ускоряются по направлению к земле быстрее. Но более поздние эксперименты показали, что это не так. Причина того, что перо будет падать медленнее, чем шар для боулинга, обусловлен сопротивлением воздуха, которое действует в противоположном направлении, как ускорение силы тяжести.

Закон всемирного тяготения Ньютона гласит, что сила тяжести прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Исаак Ньютон разработал свою теорию всемирного тяготения в 1680-х годах. Он обнаружил, что гравитация действует на все вещество и является функцией как массы, так и расстояния. Каждый объект притягивает другой объект с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Теория относительности

Ньютон опубликовал свою работу по гравитации в 1687 году, которая считалась лучшим объяснением, пока Эйнштейн не придумал свою Общую теорию относительности в 1915 году. В теории Эйнштейна гравитация – это не сила, а скорее следствие того, что материя искажается в пространство-времени. Одно из предсказаний Общей теории относительности состоит в том, что свет будет сгибаться вокруг массивных объектов.

Забавные факты

Что такое Гравитация?

Что такое гравитация Что такое гравитация[/caption]

Много веков спустя, великий Ньютон, получив яблоком по тому же темечку, оказался более подготовленным и дал ответ на древний вопрос. Так появился в свет закон всемирного тяготения, ставший основной частью гравитации, универсального фундаментального взаимодействия, существующего между всеми телами.

Гравитация от Ньютона

Все объекты, обращающиеся вокруг Солнца, удерживаются на своих орбитах с помощью гравитации. Но она не только выполняет функции некоей привязи, но ещё и стала той силой, что создала эти объекты. Сила тяготения не позволяет планетам выбирать путь по своему усмотрению, закольцевав их орбиты. Но зависимость от этой силы уменьшается экспоненциально – при удалении в два раза, воздействие ослабляется в четыре раза, а утроение удаления ослабляет силу уже в девять раз.

Ньютон напрямую ассоциировал гравитацию с силой тяжести. К телу приложена сила тяжести, источником которой является иное тело (или тела), а гравитационного поля, как такового, просто не существует. Поскольку гравитация относится к прямому взаимодействию тел, то и определяется она Законом всемирного тяготения. Гравитационному полю придан условный характер, необходимый лишь для расчётов. Для земных условий это вполне допустимо.

Гравитация от Эйнштейна

Гравитационное воздействие описывал ещё Аристотель. Он полагал, что скорость падения предмета зависима от его массы. Но лишь Галилей смог понять, что любое тело имеет равное значение ускорения. А Эйнштейн развил это утверждение в своей теории относительности, описав гравитацию с понятием геометрии пространства-времени.

В классическом представлении сила гравитационного взаимодействия двух точек имеет вид зависимости массы этих точек от расстояния в квадрате между ними. Чем больше тело, тем большее гравитационное поле оно может создать. Хотя гравитация – взаимодействие очень слабое, но действие её распространяется на любые расстояния, что становится определяющей силой во Вселенной. Гравитационное притяжение универсально по характеру воздействия на материю и энергию. Нет объектов, не имеющих его. Эйнштейн постулировал, что гравитационные эффекты обуславливаются не силовыми влияниями тела или поля, находящегося в пространстве-времени, а изменениями в самом пространстве-времени. Всё это происходит из-за наличия массы-энергии. По теории Эйнштейна, масса и энергия – это единый параметр тел. Их связывает всем известная формула: Е = m•с² Два массивных тела, взаимодействуя между собой, будут искривлять пространство. Но почему происходит это искривление, Эйнштейн ответа дать не смог.

Гравитация, в силу своей глобальности, отвечает за явления крупных масштабов. Это галактические структуры, чёрные дыры, расширяющаяся Вселенная. Но и простые факты астрономии, – планетные орбиты, земное притяжение, падение тел, – тоже зависимы от гравитации. Так что такое гравитация – простое притяжение или сама природа Вселенной?

Небесная механика

Эта часть механики изучает движение тел, находящихся в ничем не заполненном пространстве, на которые действует только гравитация. Самая простая задача раздела – обоснование гравитационного влияния двух тел, точечных или сферических, в пустом пространстве. Она формулируется тремя кеплеровскими законами.

Если же тел, которые взаимодействуют друг на друга, большее количество, задача усложняется. Численное решение приводит к неустойчивости решений от начальных условий. То есть, применив её к нашей планетной системе, мы не сумеем предугадать планетные движения на периоды, превысившие сто миллионов лет. Описание долговременного поведения системы, состоящей из многих притягивающихся тел с похожей массой, пока невозможно. Этому мешает понятие: динамический хаос.

Сильные гравитационные поля

В очень сильных гравитационных полях могут быть проявления некоторых эффектов ОТО:

Но такие проявления могут иметь место лишь в том случае, если гравитация имеет силу бесконечно большую. Пока что наиболее плотными объектами Вселенной, которые удалось обнаружить, являются нейтронные звёзды. В одной из многих теорий гравитационное поле рассматривается в качестве основы для любого поля – магнитного, электрического, глюонного. В таком случае гравитоны становятся базовыми элементами материи. Ну, а чёрная дыра является гравитонной звездой, где силой тяготения разрушаются абсолютно все элементарные частицы, кроме гравитонов. И остаётся лишь одно свойство – гравитация.

Гравитационное излучение

Такой характер излучения пока не подтвердился, но оно стало очень серьёзным предвидением ОТО. Правда, некоторые косвенные наблюдения подтверждают его существование. Например, в двойных системах, где один из участников является нейтронной звездой или чёрной дырой, энергия должна излучаться в виде гравитационного излучения. Во многих природных источниках такое излучение носит направленный характер, и это осложняет его обнаружение.

Гравитон

Поскольку гравитационное взаимодействие присутствует, оно должно как-то переноситься. В 30-х годах ХХ века кандидатом в переносчики стал гравитон. Эта частица пока ещё гипотетическая, но она должна иметь спин 2 и два вероятных направления поляризации. Некоторые физики упорно отвергают существование этой частицы. Они предполагают: если гравитоны имеются, то их должны излучать чёрные дыры, а это вступает в противоречия с ОТО. Но попытки расширить стандартную модель такими частицами сопряжены с реальными трудностями в области высоких энергий. На решении этой задачи основаны некоторые разрабатываемые теории квантовой гравитации. По их положениям гравитоны — состояние струн, а отнюдь не точечные частицы. Но низкие энергии их всё же причисляют к частицам точечным. Пока гравитоны обнаружены не были, потому что гравитационные влияния их необычайно слабы.

Квантовая гравитация

Универсальной квантовой теории, объяснившей бы само понятие гравитации, ещё не разработано. Для представления гравитационного взаимодействия было бы вероятно предложить гравитонный обмен, в котором гравитоны выступают в качестве калибровочных бозонов со спином 2. Но такая теория не считается удовлетворительной. На существующее время есть несколько подходов, разрешающих квантование гравитации. Эти подходы считаются достаточно перспективными.

Теория струн. Она заменяет частицы фона пространства-времени на струны и браны (подобие струн). Для решения многомерных задач, браны видятся как частицы уже многомерные, но в тоже время они и структуры пространства-времени. Гравитоны здесь становятся состоянием струн, а не отдельными частицами. Хотя низкие энергии их к ним и причисляют.

Петлевая квантовая гравитация. Здесь время и пространство являются дискретными частями. Они не привязаны к фону пространства-времени, являясь квантовыми пространственными ячейками. Они между собой соединены таким образом, что в малых временных масштабах представляются дискретной структурой пространства. При укрупнении масштабов, части плавно становятся непрерывным пространством-временем. Петлевая гравитация способна описать сущность Большого взрыва, а также пролить свет на его преддверие. Это даже позволяет обходиться без привлечения бозона Хиггса.

Гравитационный коллапс

Когда массивное тело, испытывая гравитационные силы, катастрофически быстро сжимается, происходит его коллапс. Так может закончиться жизнь звезды, имеющей массу более трёх солнечных. Когда в звездах заканчивается запас топлива для продолжения термоядерного процесса, их механическая устойчивость нарушается, и происходит стремительное, с ускорением, сжатие к центральной части. Если давление внутри звезды, которое постоянно растёт, сможет остановить сжатие, то центральная часть светила превратится в нейтронную звезду. При этом возможно сбрасывание оболочки и вспыхивание сверхновой. Но при превышении звездой массы, определённой пределом Оппенгеймера-Волкова, коллапс закончится преобразованием её в чёрную дыру. Значение данного предела пока точно не установлено.

Некоторые парадоксы гравитации
  1. Вращающийся вокруг Земли спутник, по отношению к планете, невесом. И всё, что в нём находится, также невесомо. Луна, относительно Земли, опять же невесома, но тела на её поверхности весом уже обладают. Тоже самое и с Землёй. Она невесома относительно Солнца, но мы на ней вес ощущаем. Солнце тоже невесомо относительно галактического ядра. И так – до бесконечности.
  2. В звёздах, в процессе термоядерных реакций, создаётся огромное давление. Но оно сдерживается гравитационными силами. То есть, существование звезды возможно потому, что присутствует динамическое равновесие: температура-давление – гравитационные силы.
  3. В чёрной дыре прекращаются все процессы, кроме одного – гравитации. Её ничто не может поглотить, искривить. По сути – она вечный управитель всех процессов во Вселенной, своеобразный фундамент Мира.
Разбегание галактик

Чем дальше находятся галактики, тем больше их скорости. Из этого вытекает, что после Большого взрыва частички, вылетевшие первыми, приобрели скорость большую. Но если представить всё иначе: изначально скорость была небольшой, и только потом масса частиц получила ускорение. Законы, в нынешнем их виде, заработали позже, а в отдельных сгустках включилась гравитация, что сжало материю в звёзды и галактики. Этот процесс сопровождался ускоренным расширением. Получается, что галактические объекты не просто разбегаются, а являются участниками расширяющегося пространства. Тогда фундаментальным свойством его будет полученное ускорение.

Всё во Вселенной вплетено в кружева гравитации. Хотя, возможно это не кружева, а прочная сеть паутины. И все космические объекты, да и мы тоже, никогда не сможем из неё вырваться.

Что такое гравитация простыми словами

Гравитация – это, казалось бы, простое понятие, известное каждому человеку еще со времен школьной скамьи. Все мы помним историю о том, как на голову Ньютона упало яблоко, и он открыл закон всемирного тяготения. Однако все не так просто, как кажется. В той статье мы попытаемся дать ясный и исчерпывающий ответ на вопрос: что такое гравитация? А также рассмотрим главные мифы и заблуждения об этом интересном явлении.

Говоря простыми словами, гравитация — это притяжение между двумя любыми объектами во вселенной. Гравитацию можно определить, зная массу тел и расстояние от одного до другого. Чем сильнее гравитационное поле, тем больше будет вес тела и выше его ускорение. Например, на Луне вес космонавта будет в шесть раз меньше, чем на Земле. Сила гравитационного поля зависит от размеров объекта, который оно окружает. Так, лунная сила притяжения в шесть раз ниже земной. Впервые обосновал это научно и доказал с помощью математических вычислений ещё в XVII веке Исаак Ньютон.

Что упало на голову Ньютону

Несмотря на то, что сам великий английский ученый частично подтверждал известную всем легенду о яблоке и ушибе головы, всё же, сейчас можно сказать с уверенностью, что при открытии закона всемирного тяготения обошлось без травм и озарений. Основой, заложившей новую эру в естественных науках, стал труд «Математические начала натуральной философии». В нем Ньютон описывает закон тяготения и важные законы механики, открытые им за долгие годы напряженной работы. Знаменитый физик был натурой неторопливой и рассудительной, как и положено гениальному ученому. А поэтому от начала раздумий о природе тяготения до издания научной работы о ней прошло больше 20 лет. Впрочем, легенда об упавшем фрукте могла иметь под собой и какие-то реальные основания, вот только голова физика однозначно осталась цела.

Законы притяжения изучались и до Исаака Ньютона самыми различными научными деятелями. Но только он впервые математически доказал прямую взаимосвязь между тяготением и движением планет. То есть падающим с ветки яблоком и вращением луны вокруг земли управляет одна и та же сила – гравитация. И она действует на любые два тела во вселенной. Эти открытия заложили основу так называемой небесной механики, а также науки о динамике. Ньютоновская модель господствовала в науке более двух веков вплоть до появления теории относительности и квантовой механики.

Что думают о гравитации современные ученые

Гравитация является самым слабым из четырех известных на данный момент фундаментальных взаимодействий, которым подчиняются все частицы и составленные из них тела. Помимо гравитационного взаимодействия сюда же входят электромагнитное, сильно и слабое. Исследуются они на основании разных теорий, так, например, в приближенных скоростях небольшой гравитации применяют теорию тяготения еще самого Ньютона. А в общем случае используют общую теорию относительности Эйнштейна. Кроме того, описание гравитации в квантовом пределе должно будет осуществляться при помощи еще не появившейся квантовой теории.

Безусловно, сегодня физика сложна и выходит далеко за рамки представлений об окружающем мире обычного человека. Но интересоваться ей необходимо хотя бы на уровне основных понятий, ведь вполне возможно, что уже в ближайшее время мы можем стать свидетелями удивительных открытий в этой области, которые кардинально изменят жизнь человечества. Будет неловко, если вы вообще не поймете, что происходит.

Мифы о гравитации

Не только незнание, но и постоянные новые открытия в данной научной сфере порождают различные несуразицы и мифы о гравитации. Итак, несколько общепринятых заблуждений об этом уникальном явлении:

20 фактов о гравитации

За счет гравитации существует вселенная: все тела притягиваются друг к другу в той или иной степени. И чем больше тело, тем сильнее оно притягивает к себе другие тела. Можно сказать, что гравитация — это своеобразная нитка, которая не позволяет планетам разлететься далеко от Солнца.

Гравитация не дуальна

Интересен тот факт, что нас с детства учат: все имеет оборотную сторону: если предмет врезался в другой предмет, то последний отлетит. Если ты обидел кого-то, то тебя обязательно кто-о тоже обидит. Для гравитации это правило не справедливо: она работает только в одну сторону: гравитация только притягивает и никогда не отталкивает!

NASA работает над созданием луча гравитации

NASA уже не первый год трудится над созданием луча, который бы смог передвигать предметы, создавая притягивающую силу, преодолевая силу гравитации. Это действительно будет прорыв: бесконтактное перемещение объектов.

Нулевой гравитации не существует

Космонавты на космических станциях испытывают не нулевую гравитацию, а микрогравитацию, т.к. они падают с той же скоростью, что и корабль, в котором они находятся.

На Юпитере вес человека удваивается

Также интересным фактом о гравитации является то, что чем больше предмет и чем больше его плотность, тем сильнее он притягивает остальные объекты. Так, например, человек весом 60 килограмм на Юпитере будет весить 142 килограмма (в 2.3 раза больше).

Как выйти из гравитации

Любой объект, который достиг скорости 11,2 километра в секунду может покинуть гравитационный колодец Земли. Именно с этой скоростью земля падает.

Гравитация — это самая слабая фундаментальная сила

Всего в физике 4 фундаментальные силы:

  1. Гравитация.
  2. Электромагнетизм.
  3. Слабое ядерное взаимодействие — распад атомов.
  4. Сильное ядерное взаимодействие — сила, которая держит атомы вместе.

Магнит с легкостью преодолевает гравитацию

Магнит размером с копейку благодаря своей силе электромагнитного воздействия приклеится к холодильнику и не будет падать, т.е. преодолеет силу гравитации Земли.

Яблоко не падало на голову Ньютону

Исаак Ньютон, увидев, как падает яблоко сделал впоследствии вывод, что на подобии того, как яблоко притягивается к Земле, Луна аналогично притягивается. А так как она далеко, то сила гравитации ослаблена, да еще и постоянно падает, однако упасть ей не дает все та же гравитация, то получается, что Луна просто вращается вокруг Земли.

Яблоко открыло закон обратной квадратичной пропорциональности

Записать закон можно так: F = G * (mM)/r2. А по русски сказать так: объект, удаленный от вас в два раза, оказывает лишь четверть прежнего гравитационного притяжения на вас.

Гравитация безгранична

согласно предыдущему закону, сила гравитации распространяется на любом расстоянии. Просто, чем оно больше, тем она слабее. Не стоит забывать о том, что стоя между двух равнозначных тел гравитацию вы не испытаете, поскольку она уравняется с обоих сторон.

Гравитация означает «тяжелый»

Слово «гравитация» произошло от латинского слова «gravis».

Гравитация не зависит от веса

Если бросить с крыши два мячика одинакового размера, но разного веса, то они упадут одновременно. Поскольку сила гравитации действует на все объекты в равной степени. Большая инерция более тяжёлого объекта аннулирует любую дополнительную скорость, которую он мог бы иметь по сравнению с более лёгким.

Гравитация искривляет пространство и время

Согласно теории относительности Эйнштейна гравитация — это ни что иное, как искривление пространства и времени, из которого состоит вселенная.

Объекты меняют пространство и время вокруг себя

В 2011 году эксперимент NASA «Гравитационного зонда В» доказал, что Земля закручивает вокруг себя вселенную. Можно провести аналогию с деревянным шариком, который плывет по течению реки: он всегда будет крутиться и закручивать воду, поскольку на него действует гравитация Земли, и плюс к этому он обладает собственной гравитацией.

Гравитация меняет направление света

Любой массивный объект, например, стеклянная линза, искривляя пространство вокруг себя, способен перенаправить луч света, который проходит через него. Гравитационные линзы с легкостью увеличивают размер далеких галактик.

Проблема трех тел до сих пор не решена

Если абстрагироваться и представить, что во вселенной всего три тела. А мы знаем, что все тела обладают гравитацией и притягивают к себе другие тела. Как они будут двигаться относительно друг друга?

Есть пять решений этой задачи, однако все они подразумевают, что изначально известны начальная скорость и направление движения каждого тела. В оригинале в качестве тел выступают Солнце, Земля и Луна. Если решить задачу, то можно предположить, откуда возникла вселенная.

Квантовая механика не учитывает гравитацию

Ни в одном уравнении квантовой механики не учитываются силы гравитации, однако все остальные три силы в них присутствуют. Если же включить гравитацию в уравнения, то их равенство мгновенно рушится. Эта одна из крупнейших проблем современной физики.

Гравитационные волны — это лишь предположение

Факты о гравитации говорят, что объекты не могут просто так притягивать друг друга, между ними должна быть связь. Предположительно (почти доказано), эта связь ни что иное, как гравитационные волны. Если человечество сможет их увидеть, то ему откроются миллионы ответов на вопросы о космосе, поскольку оно сможет увидеть все связи между объектами, даже бесконечные.


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.