Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Фрактация что это такое


Красота повтора: что такое фракталы

Фракталы известны уже почти век, хорошо изучены и имеют многочисленные приложения в жизни. Однако в основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций — копирования и масштабирования.

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д., то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

Что такое фрактал? У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: • Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). • Является (приближенно) самоподобной. • Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. • Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.

Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки. Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами. С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.

Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.

Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.

Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.

Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов. Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.

К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z2+с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).

Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Статья «Красота повтора» опубликована в журнале «Популярная механика» (№3, Март 2009).
Page 2

Фракталы известны уже почти век, хорошо изучены и имеют многочисленные приложения в жизни. Однако в основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций — копирования и масштабирования.

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д., то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

Что такое фрактал? У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: • Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). • Является (приближенно) самоподобной. • Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. • Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.

Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки. Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами. С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.

Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.

Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.

Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.

Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов. Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.

К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z2+с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).

Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Статья «Красота повтора» опубликована в журнале «Популярная механика» (№3, Март 2009).

www.popmech.ru

Что такое фракталы

Фракталы известны уже почти век, хорошо изучены и имеют многочисленные приложения в жизни. В основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций — копирования и масштабирования

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно так называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств:

На рубеже XIX и XX веков изучение фракталов носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс построил пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.

Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении относятся к началу XX века и связаны с именами французских математиков Гастона Жюлиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный труд Жюлиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жюлиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жюлиа среди математиков того времени, о ней довольно быстро забыли.

Вновь внимание к работам Жюлиа и Фату обратилось лишь полвека спустя, с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов. Ведь Фату никогда не мог посмотреть на изображения, которые мы сейчас знаем как изображения множества Мандельброта, потому что необходимое количество вычислений невозможно провести вручную. Первым, кто использовал для этого компьютер был Бенуа Мандельброт .

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными то появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.

Далее: Геометрические фракталы

elementy.ru

Популярно о фракталах: многообразие фракталов и их классификация

В статье приведена общепринятая классификация фрактальных структур. Рассмотрены геометрические, алгебраические и стохастические фракталы, а также основные свойства фрактальных множеств. Для представителей каждого класса фракталов приведены графические иллюстрации.

В период 1988-2014 гг. появилось достаточно большое количество работ, посвященных изучению фракталов и фрактальных объектов [1, 2, 5-27], в них приведено большое количество фракталов, полученных с помощью компьютерных расчетов.

В окружающей нас природе фрактальные структуры с той или иной степенью подобности можно встретить практически повсеместно. Очевидно, отчасти это связано с тем, что многие органические и неорганические формы формируются аналогично.

К фрактально подобным объектам можно отнести облака, электрический разряд в воздухе, морские раковины, кроны деревьев, кровеносную и дыхательную системы, границы морских побережий, горные цепи, зимние узоры на стекле, трещины в некоторых породах, и т.д., – по сути, список можно продолжать до бесконечности [1, 3, 4, 6, 10, 22].

Рассмотрим, например, отдельную веточку дерева. Внимательное ее изучение обязательно натолкнет на мысль, что она со своими сучками и развилками очень похожа на дерево. Такая схожесть отдельной части (ветки) с целым (деревом) говорит в пользу распространенного в природе принципа рекурсивного самоподобия. Поэтому разнообразные природные формы можно описать фрактальным алгоритмом.

Согласно [17], фрактальное множество обладает следующими основными свойствами:

В рамках одной из нескольких существующих классификаций фракталов выделяют геометрические, алгебраические и стохастические фракталы.

Геометрические фракталы

Это самый первый, ранний тип фракталов, с которых, по сути, и началась история фракталов. Такие фракталы – одни из самых наглядных, в них сразу видна самоподобность частей, и получаются они путем простых геометрических построений:

  1. Задается фигура (нулевое поколение), на основе которой будет строиться фрактал.
  2. Задается процедура-генератор, которая на основе определенного правила (или правил) преобразует нулевое поколение.
  3. Бесконечное повторение процедуры-генератора позволяет получить геометрический фрактал.

К геометрическим фракталам относятся: треугольник Серпинского (рис. 1 и 2), ковер Серпинского (рис. 3), кривая Коха, снежинка Коха, квадратная кривая Коха (рис. 4), кривая Пеано, пыль Кантора, губка Менгера (рис. 5), дракон Хартера-Хайтвея [10] (рис. 6), L-системы, и др.

Рассмотрим правила построения некоторых перечисленных фракталов.

Рис. 1. Последовательные итерации построения треугольника Серпинского

Фрактал «треугольник Серпинского» был получен в 1915 г. польским математиком Вацлавом Серпинским. Для его получения используется равносторонний треугольник. На первом этапе построения необходимо разделить этот треугольник средними линиями на 4 треугольника, и изъять внутренний из них. После этого эти же действия повторить с каждым из оставшихся трех треугольников, и т.д. (см. рис. 1). Треугольник Серпинского имеет нулевую площадь.

Стоит отметить, что существует еще несколько способов построения треугольника Серпинского, один из которых использует случайное блуждание точки на плоскости. Рис. 2 получен как раз таким способом, при построении использовано 108 точек.

Рис. 2. Ковер Серпинского, построенный методом случайного блуждания точки на плоскости

Фрактал «ковер Серпинского» был описан В. Серпинским в 1915 г., он представляет собой квадрат, который делится двумя горизонтальными и двумя вертикальными линиями на девять равных частей-квадратов, подобных исходному. Затем центральный квадрат выбрасывается, а к остальным восьми применяется та же процедура, и т.д. (рис. 3). Ковер Серпинского имеет нулевую площадь.

Рис. 3. Последовательные итерации построения ковра Серпинского

Рис. 4. Последовательные итерации построения квадратной кривой Коха

Губка Менгера (рис. 5) представляет собой обобщение ковра Серпинского на трехмерное пространство. Объем губки равен нулю, но она имеет бесконечно большую площадь.

Рис. 5. Последовательные итерации построения губки Менгера

Рис. 6. Дракон Хартера-Хайтвея

Такое понятие, как L-системы появилось в 1968 году благодаря датскому математику и биологу Аристриду Линденмайеру. Изначально они использовались при изучении формальных языков и в биологических моделях селекции. L-системы позволяют строить разнообразные самоподобные фракталы, включая ковер Серпинского и снежинку Коха [5, 27].

Несколько позже L-системы стали использовать для генерации растительных форм, таких как листья, кусты и деревья (в большинстве компьютерных игр растения ландшафтов генерируются именно L-системами).

Ниже на рис. 7 приведен фрактал «Дерево Пифагора», построенный L-системой. Название связано с тем, что каждая тройка попарно соприкасающихся квадратов ограничивает прямоугольный треугольник. Для большего эффекта квадраты на изображении закрашены разными цветами согласно номерам итераций.

Рис. 7. Дерево Пифагора (3 итерации)

На рис. 8 приведены некоторые примеры, демонстрирующие работу L-систем и моделирующие некоторые растительные формы; изображения получены в программе Graphic x4.2007.

Геометрические фракталы в компьютерной графике используются для получения изображений листьев, кустов, деревьев, береговых линий, объемных текстур, и т.д.

Рис. 8. Демонстрация результатов работы L-систем

Построение конструктивных фракталов возможно также с помощью системы итерируемых функций (Iterated Function System), или сокращенно IFS, представляющих собой систему функций некоторого фиксированного класса, позволяющих отображать одно многомерное множество на другое. Одна из самых простых IFS включает аффинные преобразования плоскости, и в двумерном пространстве задается на основе 6 коэффициентов:

Обычно IFS используется для построения листьев, цветов, веток, деревьев и кустарников при создании реалистичных картин в компьютерном дизайне и играх. На рис. 9 приведены примеры изображений, полученных на основе IFS: лист папоротника (а), коралл (б), дракон (в), спираль (г), дерево (д, е); изображения получены в программе Graphic x4.2007.

Для качественного отображения на основе IFS требуется достаточно большое количество итераций. Так, для изображений, представленных на рис. 9, использовано от 100 тыс. до 300 тыс. итераций.

Рис. 9. Демонстрация работы алгоритма IFS

Алгебраические фракталы

Эта группа фракталов строится на основе алгебраических формул, зачастую очень простых [2, 6, 8, 22]. Различают линейные и нелинейные алгебраические фракталы. Первые определяются линейными функциями (уравнениями первого порядка), а вторые – нелинейными (их природа значительно ярче, богаче и разнообразнее).

В общем виде фракталы данного класса могут быть получены на основе рассмотрения некоторых нелинейных процессов в n-мерных пространствах (в настоящее время наиболее изучены лишь двухмерные процессы). В связи с этим любой рассматриваемый нелинейный итерационный процесс может интерпретироваться как дискретная динамическая система.

Как известно (из синергетических представлений), нелинейные динамические системы могут иметь несколько устойчивых состояний. При этом состояние, в котором оказалась динамическая система после определенного конечного числа итераций, напрямую зависит от ее начального состояния. А это значит, что изучаемая система может рассматриваться в некотором фазовом пространстве, в котором будут присутствовать области притяжения (аттракторы). Рассматривая двумерное фазовое пространство и окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет любой системы. Применение различных алгоритмов выбора цвета позволяет получить достаточно сложные фрактальные картины с удивительными многоцветными узорами.

Классическим примером алгебраических фракталов является множество Мандельброта, описанное еще в 1905 г. французским математиком Пьером Фату и впервые построенное Мандельбротом в 1980 г. Алгоритм построения множества Мандельброта использует единственную простую итерационную формулу:

,

где z и c – комплексные величины, i – номер итерации.

В результате многократных итераций на плоскости образуется множество точек, выстраивающихся в сложной закономерности (рис. 10).

Доказано, что все точки, составляющие множество Мандельброта, целиком расположены внутри круга радиуса 2 на плоскости с центром в точке (0, 0). На практике при построении множества Мандельброта принято считать, что если для некоторой точки А последовательность итераций функции после некоторого их числа N (например, превышающих 100) не вышла за пределы этого круга, то точка принадлежит множеству и красится в черный цвет. Если же на какой-то итерации, меньшей N, элемент последовательности, определяемый на основе (1) по модулю стал больше 2, то он считается не относящимся к множеству. Основываясь на таком правиле, можно получить черно-белое изображение множества Мандельброта.

Рис. 10. Множество Мандельброта

Однако черно-белое множество не так привлекательно, поэтому в настоящее время принято отображать множества в цвете. Для этого можно, например, каждую точку не из множества красить в цвет, соответствующий номеру итерации, на котором ее последовательность выходит за пределы круга. Так, на рис. 10 при отображении множества Мандельброта применен наиболее распространенный способ построения цветного изображения множества, при котором точки, принадлежащие множеству, окрашиваются в черный цвет, а не принадлежащие множеству окрашиваются в цвет, соответствующий количеству итераций, за которое точка покидает окружность (построение выполнено в программе Fractal Explorer 2.02). Точки на границе множества, где возникают сложные структуры, уходят в бесконечность за конечное число итераций (аттрактор такой динамической системы находится в бесконечности).

К наиболее известным алгебраическим фракталам также относятся множества Жюлиа (рис. 11 – построение выполнено в программе Graphic v4.2007, рис. 12 – построение выполнено в программе Фракталы) и Бассейны Ньютона (рис. 13, построение выполнено в программе Fractal Explorer 2.02, рис. 14 – построение выполнено в программе Ultra Fractal 5).

Семейство множеств Жюлиа строится по той же итерационной формуле, что и множество Мандельброта, однако в качестве комплексной переменной используется лишь параметр c. Если в качестве значений комплексной переменной c использовать координаты точек, принадлежащих множеству Мандельброта, то множество Жюлиа при построении будет замкнутым.

Рис. 11. Множество Жюлиа (1)

Рис. 12. Множество Жюлиа (2)

Рис. 13. Бассейны Ньютона (1)

Рис. 14. Бассейны Ньютона (2)

Стохастические фракталы

При построении таких фракталов случайным образом изменяют некоторые параметры, определяющие структуру фрактала. При этом можно получить объекты, очень похожие на природные, которые демонстрируют несимметричные деревья, изрезанность береговых линий, модели рельефов местности и поверхности морей.

Двумерные стохастические фракталы очень часто используются для моделирования рельефа местности и поверхности моря [2].

Некоторые примеры стохастических фракталов приведены на рис. 15 и 16 (изображение на рис. 16 сгенерировано программой Apophysis 7x).

Рис. 15. Примеры стохастических фракталов

Рис. 16. Пример фрактала, сгенерированного программой Apophysis 7x

Другие примеры фрактальных изображений

Рассмотрим еще некоторые примеры фрактальных структур. На рис. 17 и 18 приведены примеры реальных природных форм, демонстрирующих фрактальную структуру.

На рис. 17 показана фотография раковины моллюска. Видно, что каждая отдельная «комнатка» является уменьшенной версией предыдущей.

На рис. 18 показано фото цветной капусты Романеско, форма которой похожа на фрактал (это позволяет назвать ее естественным фракталом). Однако самоподобная структура капусты повторяется лишь несколько раз, и прекращается на более мелких уровнях.

На рис. 19 показан пример изображения, полученного в программе Fractal Explorer 2.02.

На рис. 20 и 21 показаны примеры фрактальных изображений, полученных в программе ChaosPro 4.0. Стоит отметить, что фрактал «Плазма» сильно напоминает срез пористой среды, особенно если перевести изображение в оттенки серого.

Рис. 17. Раковина моллюска Наутилус – естественный фрактал

Рис. 18. Цветная капуста Романеско – естественный фрактал

Рис. 19. Фрактальное изображение, полученное в программе Fractal Explorer

Рис. 20. Фрактал «Плазма», полученный в программе ChaosPro 4.0

Рис. 21. Фрактальное изображение, полученное в программе ChaosPro 4.0

Огромное количество разнообразных изображений фракталов можно найти на сайте https://pixabay.com/ и использовать их по своему усмотрению (бесплатно). Ниже на рис. 22 (а) – (е) приведены некоторые из них.

Рис. 22. Примеры некоторых фракталов с сайта https://pixabay.com/

novainfo.ru

Фракталы. Что же это такое?

Редакция NNN случайно наткнулась на весьма интересный материал, представленный в блоге пользователя xtsarx, посвященный элементам теории фракталов и ее практическому применению. Как известно, терия фракталов играет далеко не последнюю роль в физике и химии наносистем. Внеся свою лепту в этот добротный материал, изложенный на языке, доступном для широкого круга читателей и подкрепленный обильным количеством графического и даже видео материала, мы представляем его Вашему вниманию. Надеемся, что читателям NNN этот материал будет интересным.

Природа так загадочна, что чем больше изучаешь ее, тем больше вопросов появляется… Ночные молнии – синие «струи» ветвящихся разрядов, морозные узоры на окне, снежинки, горы, облака, кора дерева – все это выходит за рамки привычной евклидовой геометрии. Мы не можем описать камень или границы острова с помощью прямых, кружков и треугольников. И здесь нам приходят на помощь фракталы. Что же это за знакомые незнакомцы?

«Под микроскопом он открыл, что на блохе Живет блоху кусающая блошка; На блошке той блошинка-крошка, В блошинку же вонзает зуб сердито

Блошиночка, и так ad infinitum». Д.Свифт.

Немного из истории

Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками.

Рис. 1. Кривая пеано 1,2–5 итерации.

Пеано нарисовал особый вид линии. Пеано поступил следущим образом: На первом шаге он брал прямую линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длинна исходной линии. Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Ее уникальность в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано. Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Во многих других областях науки появлялись задачи, решение которых приводило к странным результатам, на подобие описанных выше (Броуновское движение, цены на акции). Каждый из нас может проделать эту процедуру…

Отец Фракталов

Вплоть до 20 века шло накопление данных о таких странных объектах, без какой-либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт – отец современной фрактальной геометрии и слова фрактал.

Рис. 2. Бенуа Мандельброт.

Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставляя факты, он пришел к открытию нового направления в математике – фрактальной геометрии.

Термин «фрактал» Б.Мандельброт ввёл в 1975 г.. Согласно Мандельброту, фракталом (от лат. «fractus» – дробный, ломанный, разбитый) называется структура, состоящая из частей, подобных целому. Свойство самоподобия резко отличает фракталы от объектов классической геометрии. Термин самоподобие означает наличие тонкой, повторяющейся структуры, как на самых малых масштабах объекта, так и в макромаштабе.

Рис. 3. К определению понятия «фрактал».

Примерами самоподобия служат: кривые Коха, Леви, Минковского, треугольник Серпиньского, губка Менгера, дерево Пифагора и др.

С математической точки зрения, фрактал – это, прежде всего, множество с дробной (промежуточной, «не целой») размерностью. В то время как гладкая евклидова линия заполняет в точности одномерное пространство, фрактальная кривая выходит за пределы одномерного пространства, вторгается за границы в двумерное пространство.Таким образом, фрактальная размерность кривой Коха будет находиться между 1 и 2. Это, прежде всего, означает, что у фрактального объекта невозможно точно измерить его длину! Из этих геометрических фракталов очень интересным и довольно знаменитым является первый – снежинка Коха.

Рис. 4. К определению понятия «фрактал».

Строится она на основе равностороннего треугольника. Каждая линия которого заменяется на 4 линии каждая длиной в 1/3 исходной. Таким образом, с каждой итерацией длинна кривой увеличивается на треть. И если мы сделаем бесконечное число итераций – получим фрактал – снежинку Коха бесконечной длины. Получается, что наша бесконечная кривая покрывает ограниченную площадь. Попробуйте сделать то же самое методами и фигурами из евклидовой геометрии. Размерность снежинки Коха (при увеличении снежинки в 3 раза ее длина возрастает в 4 раза) D=log(4)/log(3)=1.2619.

О самом фрактале

Фракталы находят все большее и большее применение в науке и технике. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Можно до бесконечности приводить примеры фрактальных объектов в природе, – это и облака, и хлопья снега, и горы, и вспышка молнии, и наконец, цветная капуста. Фрактал как природный объект – это вечное непрерывное движение, новое становление и развитие.

Рис. 5. Фракталы в экономике.

Кроме того, фракталы находят применение в децентрализованных компьютерных сетях и «фрактальных антеннах». Весьма интересны и перспективны для моделирования различных стохастических (не детерминированных) «случайных» процессов, так называемые «броуновские фракталы». В случае нанотехнологий фракталы тоже играют важную роль, поскольку из-за своей иерархической самоорганизации многие наносистемы обладают нецелочисленной размерностью, то есть являются по своей геометрической, физико-химической или функциональной природе фракталами. Например, ярким примером химических фрактальных систем являются молекулы «дендримеров». Кроме того, принцип фрактальности (самоподобной, скейлинговой структуры) является отражением иерархичности строения системы и поэтому является более общим и универсальным, чем стандартные подходы к описанию строения и свойств наносистем.

Рис. 6. Молекулы «дендримеров».

Рис. 7. Графическая модель коммуникации в архитектурно-строительном процессе. Первый уровень взаимодействия с позиций микропроцессов.

Рис. 8. Графическая модель коммуникации в архитектурно-строительном процессе. Второй уровень взаимодействия с позиций макропроцессов (фрагмент модели).

Рис. 9. Графическая модель коммуникации в архитектурно-строительном процессе. Второй уровень взаимодействия с позиций макропроцессов (модель целиком)

Рис. 10. Плоскостное развитие графической модели. Первое гомеостатичное состояние.

Фракталы и золотое сечение «Фракталы» часть 1 «Фракталы» часть 2 «Фракталы» часть 3 «Фракталы» часть 4 «Фракталы» часть 5

Фотогалерея красивых и необычных фракталов

Рис. 11.

Рис. 12.

Рис. 13.

Рис. 14.

Рис. 15.

Рис. 16.

Рис. 17.

Рис. 18.

Рис. 19.

Рис. 20.

Рис. 21.

Рис. 22.

Рис. 23.

Рис. 24.

Рис. 25.

Рис. 26.

Рис. 27.

Рис. 28.

Рис. 29.

Рис. 30.

Рис. 31.

Рис. 32.

Рис. 33.

Рис. 34.

Рис. 35.

Коррекция и правка выполнены Филипповым Ю.П.

Пожалуйста, оцените статью:

www.nanonewsnet.ru

Что такое фрактал?

Фрактальный алгоритм компрессии изображения имеет высокий коэффициент сжатия: изображение становится гораздо меньше по размеру, что экономит память компьютера. Коэффициент сжатия при использовании фрактального алгоритма примерно сопоставим с самым популярным методом сжатия JPEG. Суть метода в обнаружении самоподобных участков в изображении, что позволяет при последующем увеличении сжатого изображения сохранить качество изображения.

В искусстве

Облака, деревья, цветы, горы, море и многие другие природные объекты, которые можно увидеть в компьютерных играх и мульт­фильмах, сгенерированы с помощью фрактальных алгоритмов. При использовании фрактального метода не нужно отдельно прорисовывать каждую деталь графического объекта (ветвь дерева, верхушку горы или лепесток цветка): достаточно лишь задать начальные параметры алгоритму, а всю оставшуюся работу сделает компьютер. Благодаря этому можно также достаточно легко и быстро видоизменять объект, поменяв лишь начальные параметры алгоритма.

В борьбе с раком

Современное медицинское оборудование (МРТ и томография) позволяет получить огромный объём цифровых данных о внут­ренних органах пациента. Компьютер проводит математический анализ этих данных и выявляет фрактальные структуры. Так, раковые опухоли и эмфиземы имеют более сложную структуру, а здоровые участки более простую. Принцип самоподобия фрактала позволяет выявить отклонения на самых ранних стадиях и делать это автоматически, без участия врача.

Раковые опухоли — аномальный, быстрый рост клеток, который сопровождается образованием новых беспорядочных кровеносных сосудов. При том, что здоровые сосуды имеют упорядоченную фрактальную структуру.

В строительстве

Современные инженеры используют высокопрочные кабеля, которые сплетены по фрактальному принципу: кабель образован из пучка меньших проводов, которые созданы из более мелких пучков и т. д. Мост Золотые ворота (Сан-Франциско, США) — один из примеров применения подобной технологии.

 Кабель моста Золотые ворота, в разрезе

oyla.xyz

Фракталы | Лаборатория космических исследований

Опубликовано vribinek в пт, 20/06/2014 - 15:25

Всем здравствуйте! Меня зовут ,Рибенек Валерия, г.Ульяновск и сегодня я выложу несколько своих научных статей на сайте ЛКИ.

Первая моя научная статья в этом блоге будет посвящена фракталам. Скажу сразу, что мои статьи рассчитаны почти на любую аудиторию. Т.е. они, надеюсь, будут интересны, как школьникам, так и студентам.

Недавно я узнала о таких интереснейших объектах математического мира как фракталы. Но существуют они не только в математике. Они окружают нас повсюду. Фракталы бывают природные. О том, что такое фракталы, о видах фракталов, о примерах этих объектов и их применении я и расскажу в этой статье. Для начала кратко расскажу, что такое фрактал.

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Для примера я вставлю картинку с изображением четырех разных фракталов.

Расскажу немного об истории фракталов. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово «фрактал» было введено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта The Fractal Geometry of Nature. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Примеров фракталов можно привести массу, потому что, как и говорила, они окружают нас повсюду. По-моему, даже вся наша Вселенная — это один огромный фрактал. Ведь все в ней, от строения атома до строения самой Вселенной, в точности повторяет друг друга. Но есть, конечно, и более конкретные примеры фракталов из разных областей. Фракталы, к примеру, присутствуют в комплексной динамике. Там они естественным образом появляются при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функцией комплекса переменных на плоскости. Одними из самых известных фракталов такого вида являются множество Жюлиа, множество Мандельброта и бассейны Ньютона. Ниже по порядку на картинки изображены каждый из вышеперечисленных фракталов.

Еще одним примером фракталов являются фрактальные кривые. Объяснить, как строиться фрактал лучше всего именно на примере фрактальных кривых. Одной из таких кривых является, так называемая, Снежинка Коха. Существует простая процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. Ниже показана Снежинка (или кривая) Коха.

Фрактальных кривых так же существует огромное множество. Самые известные из них — это, уже упомянутая, Снежинка Коха, а также кривая Леви, кривая Минковского, ломанная Дракона, кривая Пиано и дерево Пифагора. Изображение данных фракталов и их историю, я думаю, при желании вы легко сможете найти в Википедии.

Третьим примером или видом фракталов являются стохастические фракталы. К таким фракталам можно отнести траекторию броуновского движения на плоскости и в пространстве, эволюции Шрамма-Лёвнера, различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр.

Существуют так же чисто математические фракталы. Это, например, канторово множество, губка Менгера, Треугольник Серпинского и другие.

Но самые, пожалуй, интересные фракталы — это природные. Природные фракталы — это такие объекты в природе, которые обладают фрактальными свойствами. И тут уже список большой. Я не буду перечислять все, потому что, наверное, всех и не перечислить, но о некоторых расскажу. Вот, к примеру, в живой природе к таким фракталам относятся наша кровеносная система и легкие. А еще кроны и листья деревьев. Так же сюда можно отнести морских звезд, морских ежей, кораллы, морские раковины, некоторые растения, такие как капуста или брокколи. Ниже наглядно показаны несколько таких природных фракталов из живой природы.

Если же рассматривать неживую природу, то там интересных примеров гораздо больше, нежели в живой. Молнии, снежинки, облака, всем известные, узоры на окнах в морозные дни, кристаллики, горные хребты — все это является примерами природных фракталов из неживой природы.

Примеры и виды фракталы мы рассмотрели. Что же касается применения фракталов, то они применяются в самых разных областях знаний.  В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать ее при вычислении протяженности береговой линии. Так же фракталы активно используются в радиотехнике, в информатике и компьютерных технологиях, телекоммуникациях и даже экономике. Ну и, конечно же, фрактальное видение, активно используется в современном искусстве и архитектуре. Вот один из примеров фрактальных картин:

И так, на этом я думаю завершить свой рассказ о таком необычном математическом явлении как фрактал. Сегодня мы узнали о том, что такое фрактал, как он появился, о видах и о примерах фракталов. А так же я рассказала о их применении и продемонстрировала некоторые из фракталов наглядно. Надеюсь, вам понравилась эта небольшая экскурсия в мир удивительных и завораживающих фрактальных объектов.

Данная статья есть на моём сайте Наука вокруг нас.

www.spacephys.ru


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.