Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Фотон что это такое


Что такое фотон и зачем он нужен

Инструкция

Элементарная частица - это обобщающее название для группы мельчайших частиц, составляющих материю. К ним относится фотон, являющийся квантом электромагнитного излучения. Квантом называется наименьшее возможное и неделимое количество энергии отданной или принятой электроном. Существование элементарных частиц является одним из важнейших постулатов физике, а проверка этого постулата на правдивость - одной из первейших задач.

На существовании фотонов основывается множество физических теорий, начиная от квантовых и заканчивая ядерными. Квантовая электродинамика объясняет взаимодействие между фотонами, позитронами и электронами. Она рассматривает процесс передачи электромагнитной энергии между частицами, как процесс передачи виртуальными частицами. Виртуальные частицы - это находящиеся в промежуточных состояниях и не подвергающиеся обычным соотношениям между массой, энергией и импульсом.

Фотон является непрерывно движущейся со скоростью света частицей электромагнитного поля, которую нельзя остановить. Фотон либо движется со скоростью света, либо вообще не существует. Фотону присущи и корпускулярные и волновые свойства, он обладает нулевой массой покоя и имеет импульс, что доказано наличием светового давления. Фотон способен участвовать в сильных ядерных взаимодействиях, которые относятся к квантовой хромодинамике и основываются на цветовом заряде.

Ученый-физик Джеймс Максвелл пришел к выводу, что свет, что бы преодолеть препятствие, должен обладать давлением. Квантовая теория объясняет наличие у света давления как передачу фотонами своего импульса молекулам или атомам вещества. Свет оказывает давление на отражающие и поглощающие его тела, что объясняет отклонение хвостов комет, пролетающих вблизи солнца. Часть их света передается свету, а часть поглощается, за счет чего происходит видимое отклонение.

Корпускулярно-волновой дуализм. Этот физический принцип утверждает, что любой объект природы может обладать и свойствами волны, и свойствами частицы. Впервые корпускулярно-волновой дуализм был обнаружен при экспериментами со свойствами света, ведущего себя, в зависимости от условий либо электромагнитная волна либо как дискретная частица. К фотону дуализм стал применим после открытия эффекта Комптона, который выяснил, что при прохождении рентгеновских лучей через вещество, длина волны рассеянного излучения увеличивается по сравнению с длиной волны падающего излучения. Фотон проявляет корпускулярные свойства при воздействии с веществом и волновые свойства при распространении.

Видео по теме

Источники:

Фотон и его свойства. Давление света. Эффект Комптона.

Фотон и его свойства

Фотон - материальная, электрически нейтральная частица, квант электромагнитного поля (переносчик электромагнитного взаимодействия).

Основные свойства фотона

  1. Является частицей электромагнитного поля.
  2. Движется со скоростью света.
  3. Существует только в движении.
  4. Остановить фотон нельзя: он либо движется со скоростью, равной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю.

Энергия фотона:.

Согласно теории относительности энергия всегда может быть вычислена как , Отсюда  - масса фотона. 

Импульс фотона . Импульс фотона направлен по световому пучку.

Наличие импульса подтверждается экспериментально: существованием светового давления.

Давление света

В 1873 г. Дж. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствие(благодаря действию силы Лоренца; на рисунке v - направление скорости электронов под действием электрической составляющей электромагнитной волны).

Квантовая теория света объясняет световое давление как результат передачи фотонами своего импульса атомам или молекулам вещества. Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов: . Каждый фотон обладает импульсом . Полный импульс, получаемый поверхностью тела, равен . Световое давление: 

При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (удар неупругий).

Это давление оказалось ~4.10-6 Па. Предсказание Дж. Максвеллом существования светового давления было экспериментально подтверждено П. Н.Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали.

Опыты П. Н. Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом

Эффект Комптона (1923)

А. Комптон на опыте подтвердил квантовую теорию света. С точки зрения волновой теории  световые волны должны рассеиваться на малых частицах без какого-либо изменения частоты излучения,  что опытом не подтверждается.

При исследовании законов рассеяния рентгеновских лучей А. Комптон установил, что при прохождении рентгеновских лучей через вещество происходит увеличение длины волны рассеянного излучения по сравнению с длиной волны  падающего излучения. Чем больше угол рассеяния, тем больше потери энергии, а следовательно, и уменьшение частоты (увеличение длины волны). Если считать, что пучок рентгеновских лучей состоит из фотонов, которые летят со скоростью света, то результаты опытов А. Комптона можно объяснить следующим образом.

Законы сохранения энергии и импульса для системы фотон - электрон: 

где m0c2 - энергия неподвижного электрона; hv - энергия фотона до столкновения; hv' - энергия фотона после столкноВЕНИЯ, P и p' - импульсы фотона до и после столкновения; mv - импульс электрона после столкновения с фотоном.

Решение системы уравнений для энергии и импульса с учетом того, что  дает формулу для измерения длины волны при рассеянии фотона на (неподвижных) электронах:

 где - так называемая комптоновская длина волны.

Корпускулярно-волновой дуализм

Конец XIX в.: фотоэффект и эффект Комптона подтвердили теорию Ньютона, а явления дифракции, интерференции света подтвердили теорию Гюйгенса.

Таким образом, многие физики в начале XX в. пришли к выводу, что свет обладает двумя свойствами:

  1. При распространении он проявляет волновые свойства.
  2. При взаимодействии с веществом проявляет корпускулярные свойства. Его свойства не сводятся ни к волнам, ни к частицам.

Чем больше v, тем ярче выражены квантовые свойства света и менее - волновые.

Итак, всякому излучению присущи одновременно волновые и квантовые свойства. Поэтому то, как проявляет себя фотон - как волна или как частица,—зависит от характера проводимого над ним исследования.

Фотон - это... Что такое Фотон?

        элементарная частица, квант электромагнитного излучения (в узком смысле – света). Масса покоя m0 Ф. равна нулю (из опытных данных следует, что во всяком случае m0 (4․10-21 mе, где mе – масса электрона), и поэтому его скорость равна скорости света с ≈ 3․1010 см/сек. Спин (собственный момент количества движения) Ф. равен 1 (в единицах ħ = h/2π, где h = 6,624․10-27 эрг․сек – постоянная Планка), и, следовательно, Ф. относится к Бозонам. Частица со спином J и ненулевой массой покоя имеет 2J + 1 спиновых состояний, различающихся проекцией спина, но в связи с тем, что уФ. m0 = 0, он может находиться только в двух спиновых состояниях с проекциями спина на направление движения ± 1; этому свойству Ф. в классической электродинамике соответствует поперечность электромагнитной волны.          Т. к. не существует системы отсчёта, в которой Ф. покоится, ему нельзя приписать определённой внутренней чётности (См. Чётность). По электрической и магнитной мультипольностям системы зарядов (2l-поля; см. Мультиполь), излучившей данный Ф., различают состояния Ф. электрического и магнитного типа; чётность электрического мультипольного Ф. равна (– 1) l, магнитного (– 1) l + 1. Ф. – абсолютно (истинно) нейтральная частица и поэтому обладает определённым значением зарядовой чётности (см. Зарядовое сопряжение), равным -1. Кроме электромагнитного взаимодействия, Ф. участвует в гравитационном взаимодействии.          Представление о Ф. возникло в ходе развития квантовой теории и теории относительности. (Сам термин «фотон» появился лишь в 1929.) В 1900 М. Планк получил формулу для спектра теплового излучения абсолютно чёрного тела (см. Планка закон излучения), исходя из предположения, что излучение электромагнитных волн происходит определёнными порциями – «квантами», энергия которых может принимать лишь дискретный ряд значений, кратных неделимой порции – кванту hν, где ν – частота электромагнитной волны. Развивая идею Планка, А. Эйнштейн ввёл гипотезу световых квантов, согласно которой эта дискретность обусловлена не механизмом поглощения и испускания, а тем, что само излучение состоит из «неделимых квантов энергии, поглощаемых или испускаемых только целиком» (А. Эйнштейн, Собрание научных трудов, т. 3, с. 93, М., 1966). Это позволило Эйнштейну объяснить ряд закономерностей Фотоэффекта, люминесценции (См. Люминесценция), фотохимических реакций. В то же время созданная Эйнштейном специальная теория относительности (1905) привела к отказу от объяснения электромагнитных волн колебаниями особой среды – эфира, и тем самым создала предпосылки для того, чтобы считать излучение одной из форм материи, а световые кванты – реальными элементарными частицами. В опытах А. Комптона по рассеянию рентгеновских лучей было установлено, что кванты излучения подчиняются тем же кинематическим законам, что и частицы вещества, в частности кванту излучения с частотой ν необходимо приписать также и импульс hν/c (см. Комптона эффект).          К середине 30-х гг. в результате развития квантовой механики (См. Квантовая механика) стало ясно, что ни наличие волновых свойств, проявляющихся в волновых свойствах света, ни способность исчезать или появляться в актах поглощения и излучения не выделяют Ф. среди других элементарных частиц. Оказалось, что частицы вещества, например электроны, обладают волновыми свойствами (см. Волны де Бройля, Дифракция частиц), и была установлена возможность взаимопревращения пар электронов и позитронов в Ф.: например в электростатическом поле атомного ядра Ф. с энергией выше 1 Мэв (фотоны с энергией выше 100 кэв часто называют γ-квантами) может превратиться в электрон и позитрон (процесс рождения пары) и, наоборот, столкновение электрона и позитрона приводит к превращению их в два (или три) γ-кванта (аннигиляция пары; см. Аннигиляция и рождение пар).          Современной теорией, последовательно описывающей взаимодействия Ф., электронов и позитронов с учётом их возможных взаимопревращений, является квантовая электродинамика (см. Квантовая теория поля). Она рассматривает электромагнитное взаимодействие между заряженными частицами как процесс обмена виртуальными Ф. (см. Виртуальные частицы). Сами Ф. через образование виртуальных электрон-позитронных пар также могут взаимодействовать между собой, однако вероятность такого взаимодействия очень мала и экспериментально оно не наблюдалось. При рассеянии Ф. высоких энергий на адронах (См. Адроны) и атомных ядрах следует учитывать, что Ф. может превращаться виртуально в совокупность адронов, которые сильно взаимодействуют с адронами мишени. В то же время виртуальный Ф., возникающий, например, при аннигиляции электрона и позитрона высоких энергий, может превращаться в реальные адроны. (Такие процессы наблюдаются на встречных электрон-позитронных пучках.) Описание взаимодействия реальных и виртуальных Ф. с адронами осуществляется с помощью различных теоретических моделей, например векторной доминантности (см. Электромагнитные взаимодействия), модели партонов (См. Партоны) и др.          С конца 60-х гг. развивается единая теория электромагнитных и слабых взаимодействий (См. Слабые взаимодействия), в которой Ф. выступает вместе с тремя гипотетическими «переносчиками» слабых взаимодействий – векторными бозонами (двумя заряженными W +, W- и одним нейтральным Z0).

         Общеизвестные источники Ф. – источники света. Источниками γ-квантов являются радиоактивные изотопы, а также мишени, облучаемые ускоренными электронами.

         Лит: Эйнштейн А., О развитии наших взглядов на сущность и структуру излучения. Собр. науч. трудов, т. 3, М., 1966, с. 181; Бом Д., Квантовая теория, пер. с англ., 2 изд., М., 1965.

         Э. А. Тагиров.

ФОТОН - это... Что такое ФОТОН?

фотон - это... Что такое фотон?

Фотон

Фотон – фундаментальная частица, квант электромагнитного поля. В виде фотонов испускается и поглощается электромагнитное излучение. Фотон имеет свойства как частицы, так и волны. У него нет ни электрического заряда, ни массы. Фотон имеет определенную энергию Е = hν (h – постоянная Планка, равная 4.14·10-15 эВ·сек, ν – частота электромагнитных колебаний) и импульс, величина которого р = Е/с (с – скорость света, с которой всегда движется фотон в пустоте).     Наряду с реальными фотонами, существуют и так называемые виртуальные фотоны. Реальные фотоны, о которых говорилось выше, переносят энергию электромагнитного излучения и, в зависимости от этой энергии, выступают в виде радиоволн, обычного света, рентгеновских лучей и гамма-квантов. Виртуальные фотоны являются переносчиками электромагнитного взаимодействия. Для виртуальных фотонов не выполняется соотношение между энергией и импульсом р = Е/с. Так виртуальные фотоны могут иметь массу и даже находиться в состоянии покоя. Соотношения неопределённостей квантовой механики допускают кратковременное появление виртуальных частиц.

    Электромагнитное взаимодействие между двумя заряженными частицами осуществляется обменом одним или несколькими виртуальными фотонами. В роли переносчика электромагнитного взаимодействия фотон относится к классу, так называемых, калибровочных бозонов - носителей фундаментальных сил природы.

См. также


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.