Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Диод с барьером шоттки что это такое


Диод Шоттки

Диод полупроводниковый, применяющий в принципе своей работы барьерный эффект, носит имя немецкого учёного, его описавшего, – Вальтера Шоттки.

Важно! Барьерный эффект – серьёзное влияние общего объемного заряда на развитие разряда в промежутке с резко неравномерным полем.

Дополнительная информация. Что такое диод – электронный элемент, обладающий неодинаковой возможностью проводить электрический ток, в зависимости от его направления.

Диод Шоттки: принцип работы

От классического вида вентиль Шоттки отличается тем, что основу его работы составляет пара полупроводник-металл. Зачастую эта пара упоминается как барьер Шоттки. Этот барьер, кроме схожей с p-n переходом способности проводить электричество в одну сторону, обладает несколькими полезными особенностями.

Арсенид галлия и кремний – основные поставщики материала для производства электронного элемента в промышленных условиях. В более редких случаях используют драгоценные химические элементы: платина, палладий и им подобные.

Его графическое условное выражение на электрических схемах не совпадает с классическими диодами. Маркировка электронных элементов похожа. Также встречаются двойные диоды в виде сборки.

Важно! Двойной диод – это пара диодов, совмещенных в общем объеме.

Сдвоенный диод с барьером Шоттки

У сдвоенных вентилей выходы катодов или анодов совмещены. Отсюда следует, что такое изделие обладает тремя концами. Сборки с общим катодом, например, работают там, где требуются импульсные блоки питания. Диоды Шоттки с общим анодом используются существенно реже.

Диоды находятся в едином корпусе и используют для их изготовления одну технологию производства, поэтому по набору своих параметров они как близнецы-братья. Температура работы у них тоже одинаковая, т.к. находятся в общем пространстве. Данное свойство значительно уменьшает необходимость их замены из-за потери работоспособности.

Самые важные отличительные свойства рассматриваемых вентилей – это незначительное прямое падение напряжения (до 0,4 В) в момент перехода и высокое время срабатывания.

Однако упомянутая величина падения напряжения обладает узким диапазоном прикладываемого напряжения – не более 60 В. И сама эта величина мала, что задаёт достаточно узкий спектр применения данных диодов. Если напряжение превысит указанную величину, барьерный эффект исчезает, и диод начинает работать в режиме обычного выпрямительного диода. Обратное напряжение для большинства из них не выходит за рамки 250 В, однако существуют образцы с величиной обратного напряжения 1,2 кВ.

При проектировании электрических схем проектировщики частенько на принципиальных схемах диод Шоттки не выделяют графически, однако в спецификации к заказу указывают на его использование, прописывая в типе. Поэтому при заказе оборудования на это нужно обращать пристальное внимание.

Из неудобств в работе с вентилями с барьером Шоттки необходимо отметить их чрезвычайную «нежность» и нетерпимость к малейшему, даже очень короткому по времени превышению номинала обратного напряжения. В этом случае они просто выходят из строя и больше не восстанавливаются, что, в сравнении с кремниевыми диодами, не идёт им на пользу, т.к. последние обладают свойством самовосстановления, после чего могут продолжать работать в обычном режиме, не требуя замены. Также нельзя забывать, что обратный ток в них критически зависит от градуса перехода. При появлении значительного значения обратного тока, пробоя не избежать.

Повышенная рабочая частота вследствие незначительной емкости переходных процессов и короткого периода восстановления по причине серьёзного быстродействия – те положительные свойства, позволяющие использовать данные диоды, например, радиолюбителям. Также применяют их на частотах, достигающих нескольких сотен кГц, например, в импульсных выпрямителях. Большое количество произведённых диодов уходит для использования в микроэлектронике. Современный уровень развития науки и промышленности дозволяет использовать в процессе изготовления вентилей с барьером Шоттки нано технологии. Созданные таким образом вентили применяют для шунтирования транзисторов. Данное решение серьёзно увеличивает срабатывание последних.

Диоды Шоттки в источниках питания

В компьютерных блоках питания очень часто расположены вентили Шоттки. Пятивольтовое напряжение обеспечивает серьёзный ток в десятки ампер, что для низковольтных систем питания является рекордом. Для этих блоков питания и применяют вентили Шоттки. В основном, используются сдвоенные диоды с единым катодом. Ни один качественный современный питающий блок компьютеров не обходится без такой сборки.

Диагноз. «Перегоревший» питающий блок электронного устройства чаще всего означает необходимость замены сгоревшей сборки Шоттки. Причины неисправности всего две: увеличенный ток утечки и электрический пробой. При наступлении описанных состояний электрическое питание на компьютер перестаёт подаваться. Защитные механизмы сработали. Рассмотрим, как это происходит.

Принципиальная схема импульсного блока питания

Напряжение на входе компьютера отсутствует на постоянной основе. Блок питания полностью заблокирован вшитой в компьютер защитой.

Бывает «непонятная» ситуация: вентилятор охлаждения то начинает работать, то опять характерный шум пропадает. Это означает, что напряжение на входе компьютера (выходе питающего блока) то появляется, то исчезает. Т.е. защита отрабатывает периодические ошибки, но блокировать полностью источник не спешит. Появился неприятный запах, идущий от горячего блока? Диодный блок точно требует замены. Ещё один способ домашней диагностики: при большой нагрузке центрального процессора питающий блок отключился сам по себе. Это признак утечки.

После ремонта блока питания, связанного с заменой сдвоенных диодов Шоттки, необходимо «прозвонить» и транзисторы. При обратной процедуре диоды также требуют проверки. Особенно это правило актуально, если причиной ремонта стала утечка.

Проверка диодов Шоттки

Как сделать диммер для паяльника

Бытовой мультиметр хорошо справляется с задачей проверки любого вида диодов с барьером Шоттки. Способ проверки очень схож с проверкой рядового диода. Однако есть свои секреты. Электронный элемент с утечкой особенно тяжело поддаётся корректной проверке. Во-первых, диодную сборку необходимо извлечь из схемы. Для этого потребуется паяльник. Если диод пробит, то сопротивление, близкое к нулю, во всех возможных режимах работы подскажет о его неработоспособности. По физическим процессам это напоминает замыкание.

«Утечка» диагностируется сложнее. Самый распространённый мультиметр для населения – dt-830, в большинстве случаев измерений в положении «диод» не увидит проблему. При переведении регулятора в положение «омметр» омическое сопротивление уйдёт в бесконечность. Также прибор не должен показывать наличие Омического сопротивления. В противном случае требуется замена.

Тестирование диодов Шоттки

Диоды Шоттки распространены в электрике и радиоэлектронике. Область их использования широкая, вплоть до приёмников альфа излучения и различных космических аппаратов.

Видео

Изменение температуры паяльника с помощью диммера

Диод Шоттки - принцип работы, назначение :

Диод Шоттки - это полупроводниковый прибор (диод) реализованный за счет контакта металл-полупроводник. Свое имя получил в честь немецкого физика Вальтера Шоттки.

Особенности диодов Шоттки

В 1938 г. ученым была создана основа теории этих полупроводниковых приборов. Вместо p-n перехода в таких диодах в качестве барьера применен металл-полупроводник. Область полупроводникового материала объединена основными носителями. В месте контакта начинает формироваться область заряда ионизованных акцепторов. В результате в районе перехода возникает потенциальный барьер, который получил название барьера Шоттки. Изменение его уровня приводит к изменению значения тока, протекающему сквозь диод Шоттки. Главной особенностью таких полупроводниковых приборов считается низкий уровень понижения прямого напряжения после p-n перехода, а также отсутствие уровня заряда обратного восстановления.

Диоды Шоттки работают в диапазоне температур от минус 650 до плюс 1600 по Цельсию, значение допустимого обратного напряжения выпускаемых в промышленности диодов ограничено 250 В. Однако широкое применение эти приборы получили в промышленной электронике в низковольтных цепях, обратное напряжение которых ограничено пределом до десятков вольт. Диод Шоттки позволяет получать необходимое значение потенциального барьера путем подбора нужного металла. Достаточно низкий уровень высокочастотного шума позволяет использовать такие диоды в импульсных блоках питания, в цифровой аппаратуре, в качестве приемников излучения, модуляторов света, в трансформаторных блоках аналоговой аппаратуры. Они нашли широкое применение при конструировании солнечных батарей. Принцип барьера Шоттки используют при проектировании и изготовлении быстродействующих СВЧ-диодов. Диод Шоттки конструктивно исполнен в стеклянном, пластмассовом и металлическом корпусах. Также эти приборы выпускаются в SMD-корпусах.

Достоинства и недостатки

Их достоинством, в отличие от кремниевых диодов, является довольно низкое падение напряжения (до 0,2-0,4 вольт). Такое малое значение падения характерно исключительно для диодов Шоттки. Барьер Шоттки тоже имеет меньшее значение электрической емкости перехода, это позволяет заметно повышать рабочую частоту прибора. Также эти устройства характеризуются пониженным значением уровня помех. Диод Шоттки имеет и ряд недостатков. Главным является высокая чувствительность к кратковременным скачкам обратного тока и напряжения, в результате чего происходит короткое замыкание, а диод перегорает. Также диоды такого типа характеризуются увеличением значения обратного тока при повышении температуры кристалла.

По мощности эти полупроводниковые приборы можно разбить на три группы: маломощные (проходной ток их не превышает 3-5 ампер), средней мощности (до 10 ампер) и мощные (ток достигает 60 ампер). Мощные диоды Шоттки используются для работы в приборах, служащих для выпрямления переменного тока. Они обеспечивают прохождение прямого тока, достигающего десятков ампер. При этом падение напряжения на диоде составляет всего 0,5-1 В. Допустимое же значение обратного напряжения в диодах Шоттки -  200-500 В.

Учебно-практический центр "Эксперт" - Учебно-практический центр "Эксперт"

Страница 1 из 3

Как показывает текущая статистика отказов современных системных блоков питания, наибольшее количество неисправностей возникает во вторичных цепях источников питания. Отказы силовых транзисторных ключей (наиболее типовая неисправность блоков питания предыдущих поколений) на сегодняшнее время случаются крайне редко, что является показателем тех успехов, которые были достигнуты за прошедшее пятилетие производителями силовой полупроводниковой электроники. Одним из самых проблематичных узлов современных блоков питания становятся вторичные выпрямители на диодах Шоттки, что обусловлено большими значениями выходных токов блока питания. Именно высокая частота отказов диодов Шоттки стала основанием для появления этой публикации на страницах нашего журнала.

Диод Шоттки (назван в честь немецкого физика Baльтера Шоттки) – полупроводниковый диод с малым падением напряжения при прямом включении. Диоды Шоттки используют переход металл-полупроводник в качестве барьера Шоттки (вместо p-n перехода, как у обычных диодов). Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено 250 В (MBR40250 и аналоги), на практике большинство диодов Шоттки применяется в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков Вольт.

Достоинства диодов Шоттки

В то время как обычные кремниевые диоды имеют прямое падение напряжения около 0.6 – 0.7 В, применение диодов Шоттки позволяет снизить это значение до 0.2 – 0.4 В. Столь малое прямое падение напряжения присуще только диодам Шоттки с максимальным обратным напряжением порядка десятков вольт. При больших обратных напряжениях, прямое падение становится сравнимым с аналогичным параметром кремниевых диодов, что ограничивает применение диодов Шоттки низковольтными цепями. Например, для силового диода Шоттки 30Q150 с максимально возможным обратным напряжением (150 В) при прямом токе 15 А падение напряжение нормируется на уровне от 0.75 В (T = 125°C) до 1.07 В (T = −55°C).

Барьер Шоттки также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту диода. Это свойство используется в интегральных микросхемах, где диодами Шоттки шунтируются переходы транзисторов логических элементов. В силовой электронике малая ёмкость перехода (т. е. короткое время восстановления) позволяет строить выпрямители, работающие на частотах в сотни кГц и выше. Например, диод MBR4015 (15 В, 40 А), оптимизированный под высокочастотное выпрямление, нормирован для работы при dV/dt до 1000 В/мс.

Благодаря лучшим временным характеристикам и малым емкостям перехода, выпрямители на диодах Шоттки отличаются от традиционных диодных выпрямителей пониженным уровнем помех, что делает их наиболее предпочтительными для применения в импульсных блоках питания аналоговой и цифровой аппаратуры.

Недостатки диодов Шоттки

Во-первых, при кратковременном превышении максимального обратного напряжения, диод Шоттки необратимо выходит из строя, в отличие от кремниевых диодов, которые переходят в режим обратного пробоя, и при условии непревышения рассеиваемой на диоде максимальной мощности, после падения напряжения диод полностью восстанавливает свои свойства.

Во-вторых, диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими с ростом температуры кристалла. Для вышеупомянутого 30Q150 обратный ток при максимальном обратном напряжении изменяется от 0.12 мА при +25°C до 6.0 мА при +125°C. У низковольтных диодов в корпусах ТО-220 обратный ток может превышать величину в сотни миллиампер (MBR4015 — до 600 мА при +125°C). При неудовлетворительных условиях теплоотвода положительная обратная связь по теплу в диоде Шоттки приводит к его катастрофическому перегреву.

Вольт-амперная характеристика барьера Шоттки (рис. 1) имеет ярко выраженный несимметричный вид. В области прямых смещений ток экспоненциально растёт с увеличением приложенного напряжения. В области обратных смещений ток от напряжения не зависит. В обоих случаях, при прямом и обратном смещении, ток в барьере Шоттки обусловлен основными носителями заряда — электронами.

Рис. 1

По этой причине диоды на основе барьера Шоттки являются быстродействующими приборами, поскольку в них отсутствуют рекомбинационные и диффузионные процессы. Несимметричность вольт-амперной характеристики барьера Шоттки является типичной для барьерных структур. Зависимость тока от напряжения в таких структурах обусловлена изменением числа носителей, принимающих участие в процессах зарядопереноса. Роль внешнего напряжения заключается в изменении числа электронов, переходящих из одной части барьерной структуры в другую.

 Диоды Шоттки в блоках питания

В системных блоках питания, диоды Шоттки используются для выпрямления тока каналов +3.3В и +5В, а, как известно, величина выходных токов этих каналов составляет десятки ампер, что приводит к необходимости очень серьезно относиться к вопросам быстродействия выпрямителей и снижения их энергетических потерь. Решение этих вопросов способно значительно увеличить КПД источников питания и повысить надежность работы силовых транзисторов первичной части блока питания.

Итак, для уменьшения динамических коммутационных потерь и устранения режима короткого замыкания при переключении, в самых сильноточных каналах (+3.3В и +5В), где эти потери наиболее значительны, в качестве выпрямительных элементов используются диоды Шоттки. Применение диодов Шоттки в этих каналах обусловлено следующими соображениями:

1) Диод Шоттки является практически безынерционным прибором с очень малым временем восстановления обратного сопротивления, что приводит к уменьшению обратного вторичного тока и к уменьшению броска тока через коллекторы силовых транзисторов первичной части в момент переключения диода. Это в значительной степени снижает нагрузку на силовые транзисторы, и, как результат, увеличивает надежность блока питания.

2) Прямое падение напряжения на диоде Шоки также очень мало, что при величине тока 15–30 А обеспечивает значительный выигрыш в КПД.

 Так как в современных блоках питания очень мощным становится и канал напряжения +12В, то применение диодов Шоттки в этом канале также дало бы значительный энергетический эффект, однако их применение в канале +12В нецелесообразно. Это связано с тем, что при обратном напряжении свыше 50В (а в канале +12В обратное напряжение может достигать величины и 60В) диоды Шоттки начинают плохо переключаться (слишком долго и при этом возникают значительные обратные токи утечки), что приводит к потере всех преимуществ их применения. Поэтому в канале +12В используются быстродействующие кремниевые импульсные диоды. Хотя промышленностью сейчас выпускаются диоды Шоттки и с большим обратным напряжением, но их использование в блоках питания считается нецелесообразным по разным причинам, в том числе и экономического плана. Но в любых правилах имеются исключения, поэтому в отдельных блоках питания можно встретить диодные сборки Шоттки и в каналах +12В.

В современных системных блоках питания компьютеров диоды Шоттки представляют собой, как правило, диодные сборки из двух диодов (диодные полумосты), что однозначно повышает технологичность и компактность блоков питания, а также улучшает условия охлаждения диодов. Использование отдельных диодов (рис. 2), а не диодных сборок, является сейчас показателем низкокачественного блока питания.

Рис. 2

Диодные сборки выпускается, в основном, в трех типах корпусов (рис. 3):

Рис. 3

- TO-220 (менее мощные сборки с рабочими токами до 20 А, иногда до 25-30А);

- TO-247 (более мощные сборки с рабочими токами 30 – 40 А);

- TO-3P (мощные сборки).

Электрическая схема и цоколевка диодной сборки Шоттки представлены на (рис. 4).

Рис. 4

Электрические характеристики диодных сборок, наиболее часто используемых в современных системных блоках питания представлены в табл. 1.

Взаимозаменяемость диодных сборок определяется, исходя из их характеристик. Естественно, что при невозможности использовать диодную сборку с абсолютно такими же характеристиками, лучше проводить замену на прибор с большими значениями тока и напряжения. В противном случае гарантировать стабильную работу блока питания будет невозможно. Известны случаи, когда производители применяют в своих блоках питания диодные сборки со значительным запасом по мощности (хотя чаще приходится наблюдать ситуацию, как раз, обратную), и при ремонте можно установить прибор с меньшими значениями тока или напряжения. Однако при такой замене необходимо самым тщательным образом проанализировать характеристики блока питания и его нагрузки, и вся ответственность за последствия такой доработки, естественно, ложится на плечи специалиста, производящего ремонт.

Проявление неисправностей диодов Шоттки

Как уже отмечалось, неисправность диодов Шоттки является одной из основных проблем современных блоков питания. Так по каким же предварительным признакам можно предположительно определить их неисправность? Таких признаков несколько.

Во-первых, при пробоях и утечках вторичных выпрямительных диодов, как правило, срабатывает защита, и блок питания не запускается. Это может проявляться по-разному:

1) При включении блока питания вентилятор «дергается», т. е. совершает несколько оборотов и останавливается; после этого выходные напряжения полностью отсутствуют, т. е. источник питания блокируется.

2) После включения блока питания вентилятор «дергается» постоянно, на выходах блока питания можно наблюдать пульсации напряжения, т. е. защита срабатывает периодически, но блок питания при этом полностью не блокируется.

3) Признаком неисправности диодов Шоттки является чрезвычайно сильный разогрев вторичного радиатора, на котором они установлены.

4) Признаком утечки диодов Шоттки может являться самопроизвольное выключение блока питания, а значит и компьютера, при увеличении нагрузки (например, при запуске программ, обеспечивающих 100% загрузку процессора), а также невозможность запустить компьютер после «апгрейда», хотя мощность блока питания является достаточной.

Кроме того, необходимо осознавать, что в блоках питания с плохой и непродуманной схемотехникой, утечки выпрямительных диодов приводят к перегрузкам первичной цепи и к всплескам тока через силовые транзисторы, что может стать причиной их отказа. Таким образом, профессиональный подход к ремонту блоков питания, диктует обязательную проверку вторичных выпрямительных диодов при каждой замене силовых транзисторов-ключей первичной части блока питания.

Диагностика диодов Шоттки

Проверка и точная диагностика диодов Шоттки, на практике, является достаточно непростым делом, т. к. многое здесь определяется типом используемого измерительного прибора и опытом подобных измерений, хотя определить обычный пробой одного или двух диодов диодной сборки Шоттки не составляет особого труда. Для этого необходимо выпаять диодную сборку и проверить тестером оба диода согласно схеме на рис. 5. При подобной диагностике тестер необходимо установить в режим проверки диодов. Неисправный диод в обоих направлениях покажет одинаковое сопротивление (как правило, очень малое, т. е. покажет короткое замыкание), что и указывает на его непригодность для дальнейшего использования. Однако явные пробои диодных сборок в практике встречаются очень и очень редко.

 Рис. 5

В основном же, приходится иметь дело с утечками (причем зачастую с тепловыми утечками) диодов Шоттки. А вот утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером в режиме «диод» является в подавляющем большинстве случаев полностью исправным. Гарантированную точность диагностики, на наш взгляд, позволяет дать только такой метод, как замена диода на заведомо исправный аналогичный прибор.

Но все-таки, выявить «подозрительный» диод можно попытаться с помощью методики, заключающейся в измерении сопротивления его обратного перехода. Для этого будем пользоваться не режимом проверки диодов, а обычным омметром.

Внимание! При использовании этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.

Итак, устанавливаем предел измерений на значение [20К] и измеряем обратное сопротивление диода (рис. 6). Как показывает практика, исправные диоды на этом пределе измерений должны показывать бесконечно большое сопротивление.

Рис. 6

Если же при измерении выявляется некоторое, как правило, небольшое сопротивление (2–10 КОм), то такой диод можно считать «очень подозрительным» и его лучше заменить, или хотя бы проверить методом замены. Если же проводить проверку на пределе измерений [200К], то даже исправные диоды могут показывать в обратном направлении очень небольшое сопротивление (единицы и десятки кОм), поэтому и рекомендуется использовать предел [20К]. Естественно, что на больших пределах измерений (2 Мом, 20 Мом и т. д.) даже абсолютно исправный диод оказывается полностью открытым, т. к. его p-n переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. На пределе [200К] можно проводить проверку сравнительным методом, т. е. брать гарантированно-исправный диод, измерять его обратное сопротивление и сравнивать с сопротивлением проверяемого диода. Значительные отличия в этих измерениях будут указывать на необходимость замены диодной сборки.

Иногда встречаются ситуации, когда выходит из строя только один из диодов сборки. В этом случае неисправность также легко выявляется методом сравнения обратного сопротивления двух диодов одной сборки. Диоды одной сборки должны иметь одинаковое сопротивление.

Предложенную методику можно дополнить еще и проверкой на термическую устойчивость. Суть этой проверки заключается в следующем. В тот момент времени, когда проверяется сопротивление обратного перехода на пределе измерений [20K] (см. предыдущий абзац), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев ее кристалла. Неисправная диодная сборка практически мгновенно начинает «плыть», т. е. ее обратное сопротивление начинает очень быстро уменьшаться, в то время как исправная диодная сборка достаточно долго удерживает обратное сопротивление на бесконечно большом значении. Эта проверка очень важна, т. к. при работе диодная сборка сильно нагревается (не зря же ее размещают на радиаторе) и вследствие нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки к температурным колебаниям, ведь увеличение температуры корпуса до 100 или 125°C увеличивает значение обратного тока утечки в сто раз (см. данные табл. 1).

Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками не стоит злоупотреблять, т. е. не следует проводить проверки на слишком большом пределе измерений сопротивления и слишком сильно разогревать диод, т. к. теоретически, все это может привести к повреждению диода.

Кроме того, из-за возможности отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим и время пайки). Хотя надо отдать должное производителям диодов, так как многие из них добились того, что монтаж сборок можно осуществлять при высокой температуре 250 °C в течение 10 секунд.

Диод Шоттки

Диод Шоттки – это полупроводниковый электрический выпрямительный элемент, где в качестве барьера используется переход металл-полупроводник. В результате приобретаются полезные свойства: высокое быстродействие и малое падение напряжения в прямом направлении.

Из истории открытия диодов Шоттки

Выпрямительные свойства перехода металл-полупроводник впервые замечены в 1874 году Фердинандом Брауном на примере сульфидов. Пропуская ток в прямом и обратном направлении, он отметил разницу в 30%, что в корне противоречило известному закону Ома. Браун не смог объяснить происходящего, но, продолжив исследования, установил, что и сопротивление участка пропорционально протекающему току. Что также выглядело необычно.

Выпрямительный диод

Опыты повторились физиками. К примеру, Вернер Сименс отметил похожие свойства селена. Браун установил, что свойства конструкции проявляются наиболее ярко при небольшом размере контактов, приложенных к кристаллу сульфида. Исследователь применял:

Так на свет появился точечный диод, в 1900 году помешавший нашему соотечественнику Попову взять патент на детектор для радио. В собственных работах Браун излагает исследования марганцевой руды (псиломелана). Прижав контакты к кристаллу струбциной и изолировав губки от токонесущей части, учёный получил превосходные результаты, но применения эффекту в то время не нашлось. Описав, необычные свойства сульфида меди, Фердинанд положил начало твердотельной электронике.

За Брауна практическое применение нашли единомышленники. Профессор Джагдиш Чандра Бос сообщил 27 апреля 1899 года о создании первого детектора-приёмника для работы в паре с радиопередатчиком. Он использовал галенит (оксид свинца) в паре с простым проводом и поймал волны миллиметрового диапазона. В 1901 году запатентовал своё детище. Не исключено, что под влиянием слухов о Попове. Детектор Боса использован в первой трансатлантической радиопередаче Маркони. Аналогичного рода устройства на кристалле кремния запатентовал в 1906 году Гринлиф Уиттер Пиккард.

Гринлиф Уиттер Пиккард

В своей речи на вручении Нобелевской премии в 1909 году Браун отметил, что не понимает принципов открытого им явления, зато обнаружил целый ряд материалов, проявляющих новые свойства. Это уже упомянутый выше галенит, пирит, пиролюзит, тетраэдрит и ряд прочих. Перечисленные материалы привлекли внимание по простой причине: проводили электрический ток, хотя считались соединениями элементов таблицы Менделеева. Прежде подобные свойства считались прерогативой простых металлов.

Наконец, в 1926 году уже появились первые транзисторы с барьером Шоттки, а теорию под явление подвёл Уильям Брэдфорд Шокли в 1939 году. Тогда же Невилл Франсис Мот объяснил явления, происходящие в на стыке двух материалов, вычислив ток диффузии и дрейфа основных носителей заряда. Вальтер Шоттки дополнил теорию, заменив линейное электрическое поле затухающим и добавив представление о донорах ионов, расположенных в приповерхностном слое полупроводника. Объёмный заряд на границе раздела под слоем металла назвали именем учёного.

Схожие попытки подведения теории под имеющийся факт предпринимал Давыдов в 1939 году, но неправильно дал лимитирующие факторы для тока и допустил прочие ошибки. Самые правильные выводы сделал Ханс Альбрехт Бете в 1942 году, увязавший ток с термоэлектронной эмиссией носителей сквозь потенциальный барьер на границе двух материалов. Таким образом, современное название явления и диодов должно бы носить имя последнего учёного, теория Шоттки обнаруживала изъяны.

Учёный Шоттки

Теоретические исследования упираются в сложность измерения работы выхода электронов из материала в вакуум. Даже для химически инертного и стабильного металла золота определённые показания разнятся от 4 до 4,92 эВ. При высокой степени вакуума, в отсутствие ртути от насоса или масляной плёнки, получаются значения в 5,2 эВ. С развитием технологии в будущем предвидятся значения точнее. Иным вариантом решения станет использование сведений об электроотрицательности материалов для правильного предсказания событий на границе перехода. Эти величины (по шкале Поллинга) известны с точностью до 0,1 эВ. Из сказанного понятно: сегодня правильно предсказать высоту барьера по указанным методикам и, следовательно, выпрямительные свойства диодов Шоттки не представляется возможным.

Лучшие способы определения высоты барьера Шоттки

Высоту допустимо определить по известной формуле (см. рис). Где С – коэффициент, слабо зависящий от температуры. Зависимость от приложенного напряжения Va, несмотря на сложную форму считается почти линейной. Угол наклона графика составляет q/ kT. Высоту барьера определяют по графику зависимости lnJ от 1/Т при фиксированном напряжении. Расчёт ведётся по углу наклона.

Формула для расчётов

Альтернативный метод состоит в облучении перехода металл-полупроводник светом. Используются способы:

  1. Свет проходит через толщу полупроводника.
  2. Свет падает прямо на чувствительную площадку фотоэлемента.

Если энергия фотона укладывается в промежуток энергий между запрещённой зоной полупроводника и высотой барьера, наблюдается эмиссия электронов из металла. Когда параметр выше обоих указанных величин, выходной ток резко возрастает, что легко заметно на установке для эксперимента. Указанный метод позволяет установить, что работы выхода для одинакового полупроводника, с разными типами типами проводимости (n и p), в сумме дают ширину запрещённой зоны материала.

Новым методом для определения высоты барьера Шоттки служит измерение ёмкости перехода в зависимости от приложенного обратного напряжения. График показывает вид прямой, пересекающей ось абсцисс в точке, характеризующей искомую величину. Результат экспериментов сильно зависит от качества подготовки поверхности. Изучение технологических методов обработки показывает, что травление в плавиковой кислоте оставляет на образце из кремния слой оксидной плёнки толщиной 10 – 20 ангстрем.

Неизменно отмечается эффект старения. Меньше характерен для диодов Шоттки, образованных путём скола кристалла. Высоты барьеров отличаются для конкретного материала, в отдельных случаях сильно зависят от электроотрицательности металлов. Для арсенида галлия фактор почти не проявляется, в случае с сульфидом цинка играет решающую роль. Зато в последнем случае слабое действие оказывает качество подготовки поверхности, для GaAs это крайне важно. Сульфид кадмия находится в промежуточном положении относительно указанных материалов.

При исследовании оказалось, что большинство полупроводников ведёт себя подобно GaAs, включая кремний. Мид объяснил это тем, что на поверхности материала образуется ряд формаций, где энергия электронов лежит в области трети запрещённой зоны от зоны валентности. В результате при контакте с металлом уровень Ферми в последнем стремится занять схожее положение. История повторяется с любым проводником. Одновременно высота барьера становится разницей между уровнем Ферми и краем зоны проводимости в полупроводнике.

Сильное влияние электроотрицательности металла наблюдается в материалах с ярко выраженными ионными связями. Это прежде всего четырёхвалентный оксид кремния и сульфид цинка. Объясняется указанный факт отсутствием формаций, влияющих на уровень Ферми в металле. В заключение добавим, что исчерпывающей теории по поводу рассматриваемого вопроса сегодня не создано.

Преимущества диодов Шоттки

Не секрет, что диоды Шоттки служат выпрямителями на выходе импульсных блоков питания. Производители упирают на то, что потери мощности и нагрев в этом случае намного ниже. Установлено, что падение напряжения при прямом включении на диоде Шоттки меньше в 1,5 – 2 раза, нежели в любом типе выпрямителей. Попробуем объяснить причину.

Рассмотрим работу обычного p-n-перехода. При контакте материалов с двумя разными типами проводимости начинается диффузия основных носителей за границу контакта, где они уже не основные. В физике это называется запирающим слоем. Если на n-область подать положительный потенциал, основные носители электроны моментально притянутся в выводу. Тогда запирающий слой расширится, ток не течёт. При прямом включении основные носители, напротив, наступают на запирающий слой, где активно с ним рекомбинируют. Переход открывается, течёт ток.

Выходит, ни открыть, ни закрыть простой диод мгновенно не получится. Идут процессы образования и ликвидация запирающего слоя, требующие времени. Диод Шоттки ведёт себя чуть по-иному. Приложенное прямое напряжение открывает переход, но инжекции дырок в n-полупроводник практически не происходит, барьер для них велик, в металле таких носителей мало. При обратном включении в сильно легированных полупроводниках способен течь туннельный ток.

Читатели, ознакомленные с темой Светодиодное освещение, уже в курсе, что первоначально в 1907 году Генри Джозеф Раунд сделал открытие на кристаллическом детекторе. Это диод Шоттки в первом приближении: граница металла и карбида кремния. Разница в том, что сегодня используют полупроводник n-типа и алюминий.

Диод Шоттки умеет не только светиться: для этих целей используют p-n-переход. Контакт металл-полупроводник не всегда становится выпрямляющим. В последнем случае называется омическим и входит в состав большинства транзисторов, где его паразитные эффекты излишни и вредны. Каким будет переход, зависит от высоты барьера Шоттки. При больших значениях параметра, превышающих температурную энергию, появляются выпрямительные свойства. Свойства определяется разностью работы выхода металла (в вакууме) и полупроводника, либо электронным сродством.

Свойства перехода зависят от применяемых материалов и от геометрических размеров. Объёмный заряд в рассматриваемом случае меньше, нежели при контакте двух полупроводников разного типа, значит, время переключения значительно снижается. В типичном случае укладывается в диапазон от сотен пс до десятков нс. Для обычных диодов минимум на порядок выше. В теории это выглядит как отсутствие повышения уровня барьера при приложенном обратном напряжении. Легко объяснить и малое падение напряжения тем, что часть перехода составлена чистым проводником. Актуально для приборов, рассчитанных на сравнительно низкие напряжения в десятки вольт.

Сообразно свойствам диодов Шоттки они находят широкое применение в импульсных блоках питания для бытовой техники. Это позволяет снизить потери, улучшить тепловой режим работы выпрямителей. Малая площадь перехода обусловливает низкие напряжения пробоя, что слегка компенсируется увеличением площади металлизации на кристалле, охватывающей часть изолированной оксидом кремния области. Эта площадь, напоминающая конденсатор, при обратном включении диода обедняет прилегающие слои основными носителями заряда, значительно улучшая показатели.

Благодаря быстродействию диоды Шоттки активно применяются в интегральных схемах, нацеленных на использование высоких частот – рабочих и частот синхронизации.

Диоды Шоттки от ST – самый широкий выбор

16 декабря 2010

Кремниевые силовые диоды Шоттки уже много лет как стали привычными компонентами. Широко известны их основные преимущества — сниженное (по сравнению с «обычными» кремниевыми диодами) прямое падение напряжения и отсутствие накопления заряда, задерживающего выключение диода (т.е. потенциально лучшие частотные свойства).

Однако ничто в технике не дается бесплатно. За улучшение одних свойств всегда приходится чем-то платить, не только деньгами, но и изменением других характеристик. Чем больше таких зависимостей, тем больше оказывается «степеней свободы» при оптимизации элемента под конкретное применение. Не являются исключением из этого правила и диоды Шоттки.

В конструкции «обычных» диодов этих «степеней свободы» в общем, всего три, и они мало влияют друг на друга — площадь p-n перехода, уровень легирования (удельное сопротивление) высокоомной области и время жизни неосновных носителей. Прямое падение напряжения в установившемся режиме при заданном токе зависит в основном от температуры и площади p-n перехода, и то очень слабо: от площади — по логарифмическому закону (минус ~20 мВ на удвоение площади/снижение тока вдвое), от температуры — в пределах +1…-2 мВ на градус. Удельное сопротивление материала высокоомной области у «обычных» диодов благодаря эффекту модуляции проводимости почти не влияет на прямое падение напряжения. Время жизни носителей определяет время обратного восстановления диода на основе p-n перехода (и косвенно — его ток утечки).

Для диодов Шоттки время жизни носителей не имеет прямого влияния на характеристики диода в рабочих режимах, но зато добавляется две других «степени свободы». Это выбор величины потенциального барьера (то есть, фактически, порогового напряжения — и тока утечки) и необходимость обеспечения защиты от перенапряжений (незащищенный переход Шоттки, в отличие от обычного p-n перехода, практически всегда выходит из строя при пробое обратным напряжением). Именно поэтому внутри подавляющего большинства диодов Шоттки есть еще и параллельно включенный p-n переходный «охранный» диод Кроме того, у диодов Шоттки есть сильная связь между удельным сопротивлением высокоомной области и прямым падением напряжения на больших токах (из-за отсутствия механизма модуляции проводимости). Отсутствие же эффекта модуляции проводимости уменьшает устойчивость диодов к ударному току, что вынуждает увеличивать площадь перехода (снижать плотность тока). Из-за этого емкость диодов Шоттки, отнесенная к единице номинального тока, как правило, выше, чем у обычных диодов. Наглядный пример — UF4001 имеют емкость около 15…20 пФ, 1N5819 — около 50…80 пФ (при обратном напряжении 4 В). По той же причине диоды Шоттки изготавливают с более «плотным» рядом по величине допустимого обратного напряжения — чтобы не вводить излишний запас, увеличивающий прямое сопротивление диодов.

Даже из этого упрощенного описания видно, что в конструкции диодов Шоттки намного больше вариантов для выбора компромиссов, чем в «обычных» диодах.

Именно поэтому разнообразие типов диодов Шоттки столь велико. И для осмысленного выбора лучших (для требуемого применения) вариантов нужно учитывать большее число параметров, чем при выборе «обычных» диодов. Высоковольтным диодам Шоттки на основе карбида кремния была посвящена статья [1], однако в применениях с рабочими напряжениями ниже 100…200 В лучшие характеристики (благодаря меньшему прямому падению напряжения) в настоящее время обеспечивают кремниевые диоды Шоттки.

Диоды Шоттки от STMicroelectronics

Одним из лидеров по выпуску высококачественных диодов Шоттки является компания ST Microelecronics (далее — ST), входящая в десятку лидеров в производстве компонентов для силовой электроники (См. табл. 1…5). Ряд продуктов ST просто уникален: к примеру, никто больше не в состоянии массово производить 30+30 А/170 В диоды Шоттки в корпусе ТО-220.

Таблица 1. Диоды Шоттки на ток до 200 мА…1 А  

Тип диода Корпуса [email protected], В/A [email protected], В/A UR, В IAV, А IFSM, А [email protected]°C, мА TJ max,°C [email protected], пФ ВАХ
BAT20J SOD323 0,[email protected],1 0,[email protected] 23 1 5 0,[email protected] 150 25 R
BAT30 (1x, 2x) SOT23, SOD323/523/923 0,[email protected],03 0,[email protected],2 30 0,3 1 0,[email protected] 150 8 DёR
BAT60J SOD323 0,[email protected],1 0,[email protected] 10 0,5 5 0,08 150 40 R
STPS0520Z SOD123 0,[email protected],1 0,[email protected],5 20 0,5 5,5 1,[email protected] 125 65 R+
STPS0530Z SOD123 0,[email protected],1 0,[email protected],5 30 0,5 5,5 0,[email protected] 150 80 R
STPS0540Z SOD123 0,[email protected],1 0,[email protected],5 40 0,5 5,5 0,[email protected] 150 80 R
STPS0560Z SOD123 0,[email protected],1 0,[email protected],5 60 0,5 5,5 0,[email protected] 150 45 D-
TMBAT49 MELF 0,[email protected],01 0,[email protected],1 80 0,5 10* 0,6 125 40 DёR
TMBYV10-40 MELF 0,[email protected],1 0,[email protected] 40 1 25 1 125 70 R+
TMBYV10-60 MELF 0,[email protected],1 0,[email protected] 60 1 20 0,5 125 45 D
1N5817 DO-41 0,[email protected],1 0,[email protected] 20 1 25 0,6 150 120 R
1N5818 DO-41 0,[email protected],1 0,[email protected] 30 1 25 0,8 150 120 R
1N5819 DO-41 0,[email protected],1 0,[email protected] 40 1 20 0,4 150 80 D
STPS120M/MF DO-216/DO-222 0,[email protected],1 0,[email protected] 20 1 45 0,15 150 150 D
STPS130A/U SMA/SMB 0,[email protected],1 0,[email protected] 30 1 45 0,4 150 100 DёR
STPS140A/U/Z SMA/SMB/SOD-123 0,[email protected],1 0,[email protected] 40 1 50 0,6 150 80 DёR
STPS160A/MF SMA/DO-222/DO-41 0,[email protected],1 0,[email protected] 60 1 75 0,15 150 100 D-
STPS1150A SMA/DO-41 0,[email protected],1 0,[email protected] 150 1 50 0,02 175 38 D-
STPS1L20M/MF DO-216/DO-222 0,[email protected],1 0,[email protected] 20 1 50 1 150 170 DёR
STPS1L30A/U/M/MF SMA/SMB/DO-216/DO-222 0,[email protected],1 0,[email protected] 30 1 75 2 150 200 R
STPS1L40A/U/M/MF SMA/SMB/DO-216/DO-222 0,[email protected],1 0,[email protected] 40 1 60 0,6 150 70 D
STPS1L60A/MF SMA/DO-222/DO-41 0,[email protected],1 0,[email protected] 60 1 40 0,8 150 56 D-
STPS1h200A/U/ AF/MF SMA/SMB/DO-221/DO-222 0,[email protected],1 0,[email protected] 100 1 50 0,01 175 55 D-
Примечания к таблице см. в конце статьи.

Таблица 2. Диоды Шоттки на ток до 2…3 А (включая сдвоенные, для них — данные одного диода)  

Тип диода Корпуса [email protected], В/A [email protected], В/A UR, В IAV, А IFSM, А [email protected]°C, мА TJ max,°C [email protected], пФ ВАХ
STPS2L25U/UF SMB/SMBF 0,[email protected],2 0,[email protected] 25 2 75 1,5 150 210 DёR
STPS2L30A/AF/UF SMA/SMAF/SMBF 0,[email protected],2 0,[email protected] 30 2 75 2,0 150 210 DёR
STPS2L40AF/U/UF SMAF/SMB/SMBF 0,[email protected],2 0,[email protected] 40 2 75 4,0 150 280 D
STPS2L60/A/UF DO-41/SMA/SMBF 0,[email protected],2 0,[email protected] 60 2 75 0,8 150 120 D-
STPS2h200A/U/UF/RL SMA/SMB/SMBF/DO-41 0,[email protected],2 0,[email protected] 100 2 75 0,05 175 50 D-
STPS2150A/AF SMA/SMAF 0,[email protected],2 0,[email protected] 150 2 75 0,05 175 70 D-
1N5821 DO-201 0,[email protected],2 0,[email protected] 30 3 80 3,0 150 300 DёR
1N5822 DO-201 0,[email protected],2 0,[email protected] 40 3 80 1,5 150 200 D
STPS3L25S SMC 0,[email protected],25 0,[email protected] 25 3 75 1,5 150 200 D-
STPS3L40S/UF SMC/SMBF 0,[email protected],3 0,[email protected] 40 3 75 1,5 150 200 D
STPS340B/S/U/UF DPAK/SMC/SMB/SMBF 0,[email protected],2 0,[email protected] 40 3 75 0,25 150 150 D-
STPS3L60/Q/U/UF DO-201/DO-215/SMB/SMBF 0,[email protected],25 0,[email protected] 60 3 100 1,5 150 160 D-
STPS3L60S SMC 0,[email protected],25 0,[email protected] 60 3 75 0,8 150 100 D-
STPS3h200U/UF SMB/SMBF 0,[email protected],25 0,[email protected] 100 3 75 0,04 175 50 D-
STPS3150/U/UF DO-201/SMB/SMBF 0,[email protected],3 0,[email protected] 150 3 100 0,05 175 100 D
STPS640CT/B/FPAB* TO-220/DPAK/ISO-220 0,[email protected],3 < /font> 0,[email protected] 40 3 75 0,3 150 150 R
STPS660CB* DPAK 0,[email protected],3 0,[email protected] 60 3 50 0,3 125 350* D
Примечания к таблице см. в конце статьи.

Таблица 3. Диоды Шоттки на ток до 2…3 А (включая сдвоенные, для них — данные одного диода)  

Тип диода Корпуса [email protected], В/A [email protected], В/A UR, В IAV, А IFSM, А [email protected]°C, мА TJ max,°C [email protected], пФ ВАХ
STPS5L25 DPAK 0,[email protected],5 0,[email protected] 25 5,0 75 16 150 600 DёR
STPS5L40 DO201 0,[email protected],5 0,[email protected] 40 5,0 150 5 150 300 D
STPS5L60/S DO201/SMC 0,[email protected],5 0,[email protected] 60 5,0 150 4 150 400 D-
STPS745D/FP/G TO220/ISO220/D2PAK 0,[email protected],5 0,[email protected] 45 7,5 150 0,8 175 320 D-
STPS8L30B/H DPAK/IPAK 0,[email protected] 0,[email protected] 30 8,0 75 10 150 600 R
STPS8h200G/FP/D TO220/ISO220/D2PAK 0,[email protected] 0,[email protected] 100 8,0 250 0,2 175 500 D-
STPS10L40CT/CG/CFP* TO220/D2PAK/ ISO220 0,[email protected],5 0,[email protected] 40 5,0 150 4 150 340 D
STPS10L45CT/CG/CFP/CR* TO220/D2PAK/ ISO220/I2PAK 0,[email protected],5 0,[email protected] 45 5,0 150 5 150 340 DёR
STPS10L60CFP/CG* ISO220/D2PAK 0,[email protected],5 0,[email protected] 60 5,0 180 7 150 400 D
STPS10h200CT/CFP/CG/CR* TO220/ISO220/D2PAK/I2PAK 0,[email protected],5 0,[email protected] 100 5,0 180 0,08 175 340 D
STPS10120CT/CFP* TO220/ISO220 0,[email protected],5 0,[email protected] 120 5,0 120 0,08 175 120 D
STPS10150CT/CFP/CG* TO220/ISO220/D2PAK 0,[email protected],5 0,[email protected] 150 5,0 120 0,03 175 100 DёR
STPS10170CT/CG/CR/CB TO220/D2PAK/I2PAK/DPAK 0,[email protected],5 0,[email protected] 170 5,0 75 0,1 175 100 DёR
STPS15L30CDJF* PQFN8 0,[email protected] 0,[email protected],5 30 7,5 150 8 150 500 D-
STPS15L30CB* DPAK 0,[email protected] 0,[email protected],5 30 7,5 75 8 150 850 DёR
STPS1545CT/CFP/CG/CR/CB* TO220/ISO220/ D2PAK/I2PAK/DPAK 0,[email protected] 0,[email protected],5 45 7,5 150 0,6 175 320 D-
STPS15L45CB* DPAK 0,[email protected] 0,[email protected],5 45 7,5 75 5 150 520 D-
STPS15L60CB* DPAK 0,[email protected] 0,[email protected],5 60 7,5 75 7 150 360 D-
STPS15h200CB/CH* DPAK/IPAK 0,[email protected] 0,[email protected],5 100 7,5 75 0,08 175 300 D-
STPS16L40CT* TO220 0,[email protected] 0,[email protected] 40 8,0 180 6 150 700 DёR
STPS16h200CT/CFP/CG/CR* TO220/ISO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 100 8,0 200 0,1 175 400 D
STPS16150CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 150 8,0 150 0,05 175 160 D-
STPS16170CT/CG/CR/CB* TO220/D2PAK/I2PAK/DPAK 0,[email protected] 0,[email protected] 170 8,0 75 0,1 175 150 D-
Примечания к таблице см. в конце статьи.

Таблица 4. Диоды Шоттки на ток до 10…25 А (включая сдвоенные, для них — данные одного диода)  

Тип диода Корпуса [email protected], В/A [email protected], В/A UR, В IAV, А IFSM, А [email protected]°C, мА TJ max,°C [email protected], пФ ВАХ
STPS10L25D/G TO220/D2PAK 0,[email protected] 0,[email protected] 25 10 200 15,0 150 1300 DёR
STPS1045B DPAK 0,[email protected] 0,[email protected] 45 10 75 0,7 175 500 D-
STPS1045D/FP TO220/ISO220 0,[email protected] 0,[email protected] 45 10 180 0,8 175 500 D-
STPS10L60D/FP TO220/ISO220 0,[email protected] 0,[email protected] 60 10 220 6,0 150 600 D
STPS15L25D/G TO220/D2PAK 0,[email protected] 0,[email protected] 25 15 250 20,0 150 2300 R+
STPS20L15D/G TO220/D2PAK 0,[email protected] 0,[email protected] 15 20 310 40,0 125 1400 R
STPS20L25CT/CG* TO220/D2PAK 0,[email protected] 0,[email protected] 25 10 220 16,0 150 1300 R
STPS2030CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 30 10 180 10,0 150 1000 DёR
STPS20L40CFP* ISO220 0,[email protected] 0,[email protected] 40 10 180 5,0 150 700 DёR
STPS20L45CT/CFP/CG* TO220/ISO220/D2PAK 0,[email protected] 0,[email protected] 45 10 180 7,0 150 700 DёR
STPS2045CT/CFP/CG/CR* TO220/ISO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 45 10 180 0,8 175 500 D-
STPS20L60CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 60 10 220 7,0 150 600 D-
STPS2060CT* TO-220 0,[email protected] 0,[email protected] 60 10 200 0,5 150 550 D
STPS20100CT* TO-220 0,[email protected] 0,[email protected] 100 10 200 1,6 175 560 D
STPS20h200CT/CFP/CG/CR* TO220/ISO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 100 10 250 0,08 175 500 D-
STPS20S100CT/CFP/CR* TO220/ISO220/I2PAK 0,[email protected] 0,[email protected] 100 10 180 0,08 175 300 D-
STPS20120D TO220 0,[email protected] 0,[email protected] 120 20 200 0,25 175 370 D-
STPS20120CT/CFP/CR* TO220/ISO220/I2PAK 0,[email protected] 0,[email protected] 120 10 150 0,15 175 200 D-
STPS20L120CT/CFP* TO220/ISO220 0,[email protected] 0,[email protected] 120 10 200 1,0 150 320 D-
STPS20150CT/CFP/CG/CR* TO220/ISO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 150 10 180 0,02 175 260 D-
STPS20170CT/CFP/CG/CR* TO220/ISO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 170 10 180 0,02 175 260 D
STPS2545CT/CFP/CG* TO220/ISO220/D2PAK 0,[email protected] 0,[email protected] 45 12,5 200 0,7 175 600 D-
STPS30L30CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 30 15 220 20,0 150 1300 R
STPS3030CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 30 15 250 10,0 150 1000 R
STPS30L40CW/CT/CG* TO247/TO220/D2PAK 0,[email protected] 0,[email protected] 40 15 220 8,0 150 650 DёR
STPS30L45CW/CT/CG/CR* TO247/TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 45 15 220 12,0 150 650 DёR
STPS3045CW/CP/CPI/ CT/CFP/CG/CR* TO247/TO218/ISO218/ TO220/ISO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 45 15 220 1,0 175 800 DёR
STPS30L60CW/CT/CG/CR* TO247/TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 60 15 230 8,0 150 800 D-
STPS3060CW* TO247 0,[email protected] 0,[email protected] 60 15 200 0,4 150 550 DёR
STPS30H60CW/CT/CFP/CG/CR* TO247/TO220/ISO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 60 15 230 0,8 175 800 D-
STPS30h200CW/CT* TO247/TO220 0,[email protected] 0,[email protected] 100 15 250 0,1 175 500 D
STPS30L120CT/CFP* TO220/ISO220 0,[email protected] 0,[email protected] 120 15 220 1,0 150 500 DёR
STPS30120CT/CR* TO220/I2PAK 0,[email protected] 0,[email protected] 120 15 180 0,2 175 300 D-
STPS30150CW/CT/CFP/CG* TO247/TO220 /D2PAK 0,[email protected] 0,[email protected] 150 15 220 0,03 175 400 D-
STPS30170CW/CT/CFP/CG* TO247/TO220/ISO220/D2PAK 0,[email protected] 0,[email protected] 170 15 220 0,03 175 400 D-
STPS40L15CW/CT* TO247/TO220 0,[email protected] 0,[email protected] 15 20 310 60,0 125 1300 R
STPS41L30CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 30 20 220 15,0 150 1600 R
STPS40L40CW/CT* TO247/TO220 0,[email protected] 0,[email protected] 40 20 230 15,0 150 1600 R
STPS40L45CW/CT/CG* TO247/TO220/D2PAK 0,[email protected] 0,[email protected] 40 20 230 20,0 150 1500 R
STPS4045CW/CT* TO247/TO220 0,[email protected] 0,[email protected] 45 20 220 1,0 175 550 D-
STPS41L45C T/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 45 20 220 10,0 150 1300 DёR
STPS41L60CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 60 20 220 12,0 150 1700 D
STPS40M100CT/CR* TO220/I2PAK 0,[email protected] 0,[email protected] 100 20 530 1,5 150 1000 D-
STPS40SM100CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 100 20 530 1,0 150 750 D-
STPS40h200CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 100 20 220 0,25 175 850 D
STPS40h200CW* TO247 0,[email protected] 0,[email protected] 100 20 300 0,6 150 1300 D-
STPS41h200CT/CG/CR* TO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 100 20 220 0,2 175 850 D
STPS40120CT/CR* TO220/I2PAK 0,[email protected] 0,[email protected] 120 20 200 0,4 175 470 D
STPS40150CW/CT/CG* TO247/TO220/D2PAK 0,[email protected] 0,[email protected] 150 20 250 0,2 175 500 D-
STPS40170CW/CT/CG* TO247/TO220/D2PAK 0,[email protected] 0,[email protected] 170 20 250 0,5 175 500 D
STPS50U100CT/CR* TO220,I2PAK 0,[email protected] 0,[email protected] 100 25 250 1,5 150 1600* D
Примечания к таблице см. в конце статьи.

Таблица 5. Диоды Шоттки на ток до 30…120А (включая сдвоенные, для них — данные одного диода)

Тип диода Корпуса [email protected], В/A [email protected], В/A UR, В IAV, А IFSM, А [email protected]°C, мА TJ max,°C [email protected], пФ ВАХ
STPS3045DJF PQFN8 0,[email protected] 0,[email protected] 45 30 200 2,5 150 1200 D
STPS30100ST TO220 0,[email protected] 0,[email protected] 100 30 300 1,6 150 1300 D-
STPS30M100ST/SFP/SR TO220/ISO220/I2PAK 0,[email protected] 0,[email protected] 100 30 300 2 150 1100 D-
STPS30SM100ST/SFP/SG/SR TO220/ISO220/D2PAK/I2PAK 0,[email protected] 0,[email protected] 100 30 530 0,9 150 900 D-
STPS30M100DJF PQFN8 0,[email protected] 0,[email protected] 100 30 200 0,8 150 600 D-
STPS30U100DJF PQFN8 0,[email protected] 0,[email protected] 100 30 200 2 150 1500 D-
STPS30120DJF PQFN8 0,[email protected] 0,[email protected] 120 30 200 0,3 150 650 D
STPS30170DJF PQFN8 0,[email protected] 0,[email protected] 170 30 200 0,25 150 450 D
STPS60L30CW* TO247 0,[email protected] 0,[email protected] 30 30 600 30 150 2800 R
STPS60L40CW* TO247 0,[email protected] 0,[email protected] 40 30 600 12 150 2400 R
STPS60L45CW* TO247 0,[email protected] 0,[email protected] 45 30 600 12 150 2400 R
STPS6045CW/CP/CPI* TO247/TO218/ISO218 0,[email protected] 0,[email protected] 45 30 400 2,5 175 1600 DёR
STPS61L45CT/CW* TO220/TO247 0,[email protected] 0,[email protected] 45 30 500 20 150 1700 DёR
STPS61L60CT/CW* TO220/TO247 0,[email protected] 0,[email protected] 60 30 400 15 150 1300 D
STPS60h200CT* TO220 0,[email protected] 0,[email protected] 100 30 300 0,2 175 850 D-
STPS61h200CW* TO247 0,[email protected] 0,[email protected] 100 30 450 0,25 175 1200 D-
STPS60150CT* TO220 0,[email protected] 0,[email protected] 150 30 270 0,2 175 600 D-
STPS61150CW* TO247 0,[email protected] 0,[email protected] 150 30 500 0,6 175 1200 D-
STPS60170CT* TO220 0,[email protected] 0,[email protected] 170 30 270 0,6 175 1200 DёR
STPS61170CW* TO247 0,[email protected] 0,[email protected] 170 30 500 0,9 175 1200 DёR
STPS80L60CY* MAX247 0,[email protected] 0,[email protected] 60 40 400 35 150 5500 R
STPS80h200CY* MAX247 0,[email protected] 0,[email protected] 100 40 400 1 175 1900 D
STPS80h200CTV* ISOTOP4 0,[email protected] 0,[email protected] 100 40 700 1 150 1900 D
STPS80150CW* TO247 0,[email protected] 0,[email protected] 150 40 500 0,6 175 1300 D
STPS80170CW* TO247 0,[email protected] 0,[email protected] 170 40 500 1,5 175 1300 DёR
STPS120L15CTV* ISOTOP4 0,[email protected] 0,[email protected] 15 60 1200 340 125 6800 D
STPS12045CTV* ISOTOP4 0,[email protected] 0,[email protected] 45 60 900 6 150 3100 D
STPS16045CTV* ISOTOP4 0,[email protected] 0,[email protected] 45 80 900 6 150 3100 D
STPS160h200CTV* ISOTOP4 0,[email protected] 0,[email protected] 100 80 1000 2,5 150 3800 D-
STPS200170CTV* ISOTOP4 0,[email protected] 0,[email protected] 170 100 700 2,5 150 3800 D-
STPS24045CTV* ISOTOP4 0,[email protected] 0,[email protected] 45 120 1500 10 150 8500 R
Примечания к таблице см. в конце статьи.

Обозначение выпрямительных диодов Шоттки у ST состоит из следующих элементов:

Пример: STPS160U — диод Шоттки на 1 А, 60 В, в корпусе SMB.

При выборе диодов Шоттки нужно четко различать две группы областей применения — относительно низкочастотную коммутацию (OR-ing источников питания, cуммирование напряжений, выпрямление 50/60 Гц с минимальными потерями), где нужны минимальные потери от прямого падения напряжения и/или токов утечки, и применение в высокочастотных импульсных преобразователях, где важна минимальная величина общих потерь, то есть нужен минимум суммы статических и динамических потерь.

Диоды, оптимизированные для первой группы применений — это диоды с минимальными прямыми падениями напряжения, получаемыми, как правило, за счет больших площадей переходов (больших емкостей), или специальные микросхемы с использованием управляемого МОП-транзистора, внешне выглядящие как диод, но с чрезвычайно малым падением напряжения. Пример первого подхода — изделие ONSemi MBRB2515, с VF ~250 мВ при токе 56 А, и с емкостью перехода, приближающейся к 10 нФ. Диод подобного класса от ST — STPS40L15CT, сдвоенный и с примерно вдвое меньшей емкостью переходов. Пример второго подхода — диод от ST SPV1001T40, VF ~80…100 мВ при токе 5…6 А, 230…250 мВ при токе 15 А. Преимущество этого решения от ST очевидно.

Что же касается диодов Шоттки для применения в DC/DC-конверторах, то минимальные общие потери совершенно необязательно обеспечит диод с минимальным VF. Особенно при широком диапазоне нагрузок (когда нужно учитывать потери не только от прямого падения напряжения, но и от токов утечки — их величина экспоненциально зависит не только от температуры, но и от начального падения напряжения). Связано это с тем, что за снижение прямого падения напряжения приходится платить либо ростом площади перехода (и емкости диода, что приводит к росту коммутационных потерь, пропорциональных fґСдU2/2), либо резким ростом тока утечки (когда для минимизации прямого падения напряжения выбрано практически нулевое пороговое напряжение за счет подбора материала контакта металл-полупроводник). Примером диода, имеющего минимальные емкости, но небольшой диапазон рабочих токов и температур, может служить поставляемый NXP PMEG1030 (3 A, 10 В), обратный ток которого при температуре перехода 25…30°С составляет около 1 мА, но при 125°С достигает порядка 100 мА (это не опечатка!).

ST Microelectronics, как один из лидеров в силовой электронике, предлагает, пожалуй, самую широкую в индустрии гамму диодов Шоттки на токи от 0,5 до 200 А, оптимизированных по соотношению статических и динамических потерь.

Обратим к примеру, внимание на серию ULVF. STPS50U100C — сдвоенный (25+25 А) 100 В диод в корпусе ТО-220, обладающий одновременно низким прямым падением напряжения (~600 мВ при 15 А/диод) и умеренными как токами утечки (~10 мА при 125°С), так и емкостью перехода (~2200 пФ при 0 В, ~1500 пФ при 10 В, с резким снижением выше 20 В, до 300 пФ на 100 В). Потери переключения каждого такого диода на частоте 100 кГц составляют десятые доли ватта, на частоте 500 кГц — единицы ватт.

Далее, для популярных в настоящее время максимально компактных применений ST выпускает серию 15/30 А диодов в корпусе для поверхностного монтажа Power Flat (PQFN8) — его высота чуть больше 1 мм, размер в плане — 5х6 мм. Это STPS15L30CDJF (7,5+7,5 А), STPS3045DJF, STPS30M100DJF, STPS30U100DJF, STPS30120DJF, STPS30170DJF. Эти диоды рассчитаны на использование в печатных платах с малым тепловым сопротивлением, например, на металлическом основании.

Для сильноточных применений ST производит самые мощные диоды Шоттки из имеющихся в корпусах TO-220 (STPS40M100CT, STPS40120CT, STPS50U100C, STPS60h200CT, STPS60150CT, STPS60170CT, STPS61L45CT, STPS61L60CT) и TO-247/MAX247 (STPS61h200CW, STPS80L60CW, STPS80h200CY, STPS80150CY, STPS80170CY). Наличие столь мощных диодов в стандартных широко распространенных корпусах позволяет упростить и удешевить конструкцию устройств с их применением.

Для приложений, требующих еще больших токов, ST выпускает сдвоенные диоды в изолированном корпусе ISOTOP/ISOT4D (SOT227) — STPS80h200TV, STPS120L15TV, STPS12045TV, STPS160h200TV, STPS24045TV, STPS200170TV (ток до 100…120 А на диод, напряжение 15…170 В).

Другой край ассортимента — диоды, оптимизированные для маломощных применений, такие как STPS0520Z (0,5 А, 20 В) — емкость ~120 пФ при 1 В, ~35 пФ при 20 В, VF ~320…350 мВ при 0,5 А, ток утечки ~80 мкА при температуре перехода 30°С и ~5 мА при 100°С. Такие диоды, благодаря малым емкостям и умеренным утечкам — очень полезный компонент для самых распространенных относительно маломощных преобразователей. Малые емкости позволяют поднять рабочую частоту без ущерба для КПД. Аналогичную область применения имеют диоды BAT30, TMBAT49, TMBYV10-40, TMBYV10-60, BAT20, BAT60.

Естественно, кроме этих «марочных» продуктов, ST выпускает аналоги популярных стандартных продуктов, от BAT30-0X, BAT41, BAT42, TMBAT49, TMBYV10-40, TMBYV10-60, BAT60, 1N5817-1N5819, 1N5821-1N5822, до MBR20100 (STPS20S100C).

Весьма существенной особенностью большинства диодов Шоттки от ST является подробное нормирование динамических тепловых параметров и работы в режиме лавинного пробоя (абсорбции выбросов перенапряжений, возникающих, к примеру, на индуктивностях монтажа). Это позволяет использовать диоды с меньшим допустимым обратным напряжением, получая выигрыш либо в виде снижения потерь (за счет меньших VF и/или Cд), либо снижения стоимости комплектующих. Экономия на стоимости диодов возможна благодаря тому, что вместо диодов с большим максимальным напряжением часто можно выбрать диод, рассчитанный на меньшее максимальное напряжение и максимальный ток, но обеспечивающий при данном рабочем токе то же значение потерь и VF, что и более высоковольтный, рассчитанный на больший ток. В результате получается, что можно либо снизить потери в выпрямителях примерно на 20…25%, либо на примерно такую же величину снизить стоимость используемых диодов.

Однако автор хотел бы предостеречь от распространенной ошибки — попытки использования диодов Шоттки «на пределе» по току, особенно в схемах с «жестким» переключением токов. Во-первых, это крайне нежелательно с точки зрения динамических потерь, поскольку при больших токах (соответствующих падениям напряжения более 0,6…0,9 В в зависимости от типа диода) в структуре диодов Шоттки начинает работать параллельно включенный p-n переходный «охранный» диод. В первую очередь это проявляется появлением накопления заряда выключения, что может вызывать большие импульсные токи/напряжения.

Во-вторых, нужно помнить, что нагрев диодов Шоттки почти не влияет на прямое падение напряжения при больших токах, но вызывает резкий рост токов утечек. Последнее опасно проявлением эффекта саморазогрева обратными токами. Увеличение размера радиатора, необходимое для предотвращения этого риска, часто в итоге обходится дороже, чем использование диодов на больший ток, имеющих меньшие статические потери. Нормирование лавинных характеристик у диодов ST в этом отношении оказывается весьма кстати, поскольку позволяет обойтись диодами на минимальное обратное напряжение (и соответственно, как более дешевыми, так и имеющими меньшее VF).

В заключение стоит сказать, что номенклатура быстродействующих выпрямительных диодов, производимых ST, не ограничивается диодами Шоттки. ST производит большое число Ultrafast-диодов (trr ~50…80 нс), в том числе высоковольтных (на напряжения до 1200 В) и токи до 60 А/диод, 120 А на корпус (серия STTH). В ряде случаев их применение обеспечивает еще меньшие динамические потери, чем у диодов Шоттки (за счет меньших емкостей переходов), см. например структуру PFC, описанную в US pat.№ 6987379.

Естественно, в производственной программе ST есть и большое число «малосигнальных» диодов Шотки, таких как BAS70-0X, BAR18, TMM6263, TMMBAT41…43, TMMBAT46, TMMBAT48, BAT54.

Стоит также отметить, что многие изготовители до сих пор считают излишним предоставлять SPICE-модели своих диодов. У ST их можно получить на сайте. Качество этих моделей, конечно, не идеальное, но они вполне пригодны для оценочных расчетов с «инженерной точностью», т.е. с погрешностями не более 10…20%.

Примечания к таблицам

1. Величины прямых падений напряжения даны для температуры перехода 25°С, максимальные значения (типовые — на 50…80 мВ меньше), с указанием тока в амперах. ТКН прямых напряжений при малых токах всегда отрицателен, но при больших токах — часто может становиться положительным, особенно для диодов с UR > 40…60 В.

2. Величины обратных токов (IR) даны типовые, в миллиамперах.

3. IFSM — величина однократного ударного тока в виде одного полупериода частоты 50 Гц, амплитудное значение.

4. Емкость диода — величина нелинейная, здесь дана в пикофарадах при обратном напряжении 4 В. Позволяет оценить порядок динамических потерь переключения (точнее, заряда переключения) в большинстве схем применения.

5. «ВАХ» — условный параметр. Качественно описывает поведение диода при больших токах. «R» — резистивный характер, «R+» — резистивный с заметным положительным ТКН, «D» — «диодный» (сильно выражено влияние параллельного p-n переходного диода), «D-» — диодный с выраженным отрицательным ТКН, «DёR» — нечто среднее.

6. Звездочкой («*») отмечены сдвоенные диоды.

Литература

1. «Идеальные диоды» от компании STMicroelectronics — Джафер Меджахед, Дмитрий Цветков/Новости электроники, 2009, №14, c.23-25.

Получение технической информации, заказ образцов, поставка — e-mail: [email protected]

•••

Диод Шоттки принцип работы

Диод Шоттки еще одна разновидность типичного полупроводникового диода, его отличительная особенность это малое падение напряжения при прямом включении. Название свое он получил в честь немецкого физика изобретателя Вальтера Шоттки. В этих диодах в роли потенциального барьера применяется переход металл-полупроводник, а не p-n переход. Допустимое обратное напряжение диодов Шоттки обычно около 1200 вольт, например CSD05120 и его аналоги, на практике они используются в низковольтных цепях при обратном напряжении до нескольких десятков вольт.

На принципиальных схемах они обозначается почти как диод, мотри рисунок выше, но с небольшими графическими отличиями, кроме того достаточно часто попадаются сдвоенные диоды-шоттки.

Сдвоенный диод Шоттки – это два отдельных элемента собранных в одном общем корпусе причем выводы катодов или анодов этих компонентов объединены. Поэтому сдвоенный диод, обычно трех выводной. В импульсных и компьютерных блоках питания можно достаточно часто увидеть сдвоенные диоды Шоттки с общим катодом.

Так как оба диода размещены в едином корпусе и собраны при одинаковом технологическом процессе, то их технические параметры почти идентичны. При подобном размещение в одном корпусе, во время работе они будут находится в одном температурном режиме, а это один из главный факторов увеличения надежность работы устройства в целом.

Достоинства

Падение напряжения на диоде при прямом включении всего 0,2—0,4 вольт, в то время, как на типовых кремниевых диодах, этот параметр составляет 0,6—0,7 вольта. Такое низкое падение напряжения на полупроводнике, при прямом включении, свойственно только диодам Шоттки с обратным напряжением максимум десятки вольт, но в случае повышения уровня приложенного напряжения, падение напряжения на диоде Шоттки уже сопоставимо с кремниевым диодом, что достаточно сильно ограничивает использование диодов Шоттки в современной электронике. Теоретически любой диод Шоттки может обладает малой емкостью барьера. Отсутствие в явном виде классического p-n перехода позволяет существенно увеличить рабочую частоту прибора. Этот параметр нашел широкое применение в производстве интегральных микросхем, где диодами Шоттки шунтируют переходы транзисторов, используемых в роле логических элементов. В силовой электронике важен другой параметр диодов Шоттки, а именно, низкое время восстановления дает возможность использовать силовые выпрямители на частоты от сотни кГц и выше. Например, радиокомпонент MBR4015 (на 15 В и 40 А), используется для выпрямления ВЧ напряжения, а его время восстановления всего 10 кВ/мкс. Благодаря указанным выше положительным свойствам, выпрямители построенные на диодах Шоттки отличаются от выпрямителей на стандартных диодах более низким уровнем помех, поэтому их применяют в аналоговых вторичных блоках питания.

Минусы

В случае краткосрочного превышении допустимого уровня обратного напряжения диод Шоттки выходит из строя, в отличие от типовых кремниевых диодов, которые просто перейдут в режим обратимого пробоя, при условии, что рассеиваемая мощность кристалла не выше допустимых значений, а после снижения напряжения диод полностью восстанавливает свои характеристики.

Диодам Шоттки свойственны более высокие значения обратных токов, увеличивающиеся с ростом температуры кристалла и в случае неудовлетворительных условий работы теплоотвода при работе с высокими токами приводят к тепловому пробою радиокомпонента.

Использование диодов Шоттки в блоках питания.

Диоды Шоттки, как я уже отметил выше, активно используются в компьютерных блоках питания и импульсных стабилизаторах напряжения. Они используются в низковольтных и сильноточных частях схемы компьютерных ИБП на + 3,3 вольта и + 5,0 вольт. Чаще всего применяются сдвоенные диоды с общим катодом. Именно использование сдвоенных диодов считаться признаком высококачественного компьютерного блока питания.

Сгоревший диод Шоттки одна из наиболее типовых неисправностей при ремонте импульсных блоках питания. У диода может быть два нерабочих состояния: электрический пробой и утечка на корпус. При любом из этих состояний ИБП блокируется благодаря встроенной схеме защиты.

В случае электрического пробоя все вторичные напряжения в блоке питания отсутствуют. Во случае утечки вентилятор компьютерного БП может «подёргиваться» и на выходе могут появляются пульсации выходного напряжения, периодически пропадающие. То есть модуль защиты периодически срабатывает, но полной блокировки не происходит. Диоды Шоттки 100% сгорели, если радиатор, на котором они закреплены, очень теплый или сильно пованивает горелым от них.

Следует сказать пару слов о том, что при ремонте ИБП после замены диодов, особенно с подозрением на утечку на корпус, следует прозвонить все силовые транзисторы работающие в ключевом режиме. А также в случае замены ключевых транзисторов проверка диодов является обязательной и строго необходимой.

Как проверить диод Шоттки мультиметром

Методика проверки диода Шоттки такая же, как и стандартного типового диода. Но и тут есть небольшие отличия. Очень трудно проверить диод этого типа уже впаянный в схему. Поэтому, сборку или отдельный элемент необходимо сначала демонтировать из схемы для проверки. Достаточно просто можно определить полностью пробитый элемент. На всех пределах измерения сопротивления, мультиметр отобразит в обе стороны бесконечно низкое сопротивление или короткое замыкание.

Сложнее проверить с подозрением на утечку. Если проводить проверку типичным мультиметром, например DT-830 в режиме «диода» то мы увидим исправный компонент. Однако если сделать измерение в режиме омметра, то обратное сопротивление на пределе «20 кОм» определяется как бесконечно огромное (1). Если же элемент показывает какое-то сопротивление, например 5 кОм, то этот диод лучше считать подозрительный и заменить на точно работоспособный. Иногда лучше сразу заменить диодов Шоттки по шинам +3,3V и +5,0V в компьютерном ИБП.

Об использование диодов Шоттки

Их иногда используют в приемники альфа и бета излучения (дозиметрах), фиксаторах нейтронного излучения, а кроме того на барьерных переходах Шоттки собирают панели солнечных батарей которые питают электроэнергией космические аппараты бороздящие просторы нашей необъятной вселенной .


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.