Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Дейтерий и тритий что это такое


Дейтерий и тритий: водород, да не тот

Прошло более 85 лет с момента открытия тяжёлых изотопов водорода, тем не менее интерес к ним с каждым годом возрастает. Они дают надежду на выход из энергетического кризиса, но вместе с тем могут поставить под угрозу существование всего живого на нашей планете. Эту опасность человечество ощутило ещё полвека назад.

Натурные макеты атомной и водородной (на переднем плане) бомб в Музее ядерного оружия (г. Саров). Фото Александра Семёнова.

Соотношение тяжёлой и лёгкой воды в природной смеси. Фото Александра Семёнова.

Студент РХТУ Борис Иванов (слева) проходит практику в тритиевом отделе АО «ВНИИНМ». Справа — автор статьи. Фото: АО «ВНИИНМ».

Стеклянный баллон вакуумной установки, потемневший от многолетнего воздействия бета-излучения трития. Фото: АО «ВНИИНМ».

Радиолюминограмма образца нержавеющей стали, экспонированного в тритии. Разным цветом показаны участки, содержащие различное количество этого изотопа. Фото: АО «ВНИИНМ».

В 1931—1932 годах американский физикохимик Гарольд Юри и его коллеги сумели выделить из обыкновенного, всем известного водорода необычную фракцию. Водород из этой фракции имел большие атомный вес и плотность, давал в эмиссионном спектре ранее незнакомые линии, напоминающие классические линии спектра водорода, но в то же время немного смещённые. Это означало, что в природном водороде присутствуют атомы нескольких сортов, отличные по своим свойствам. Так был открыт первый из тяжёлых изотопов водорода — дейтерий. Вскоре в чистом виде была получена «тяжёлая вода» — оксид дейтерия. Она имела на 10% бóльшую плотность, более высокие температуры плавления и кипения, чем вода обычная, сложнее разлагалась электрическим током, что вскоре легло в основу одного из первых способов её получения. Длительный, многоступенчатый электролиз воды позволял сконцентрировать дейтерий и очистить его от лёгкого изотопа водорода. Другой тяжёлый изотоп, тритий, открыли двумя годами позже в Кембриджском университете физики Эрнест Резерфорд, Марк Олифант и физикохимик Пауль Хартек при бомбардировке ядрами дейтерия мишеней из дейтерийсодержащих соединений. При этом исследователи впервые столкнулись с ядерным синтезом — искусственным превращением одних ядер в другие. Как оказалось, третий изотоп водорода сильно радиоактивен (период полураспада 12,32 года) и поэтому не может накапливаться в природе в сколько-нибудь значимых количествах.

За открытие дейтерия Г. Юри в 1934 году был награждён Нобелевской премией по химии. Поначалу дейтерий производили электролитическим методом, что требовало больших затрат электроэнергии и обходилось недёшево. А реакторная наработка весовых количеств трития даже по самым скромным подсчётам должна была стоить баснословных денег. Кто бы мог тогда подумать, что через два десятка лет после их открытия в нескольких государствах мира будут работать крупномасштабные производства и дейтерия и трития! Причина такой популярности тяжёлых изотопов водорода заключалась в том, что они стали основой самого мощного из всех существовавших когда-либо видов оружия. Это оружие получило название термоядерного или водородного. Вспоминая эпоху «холодной войны», в которую довелось родиться автору этой статьи, стоит заметить, что зловещее и практически забытое сейчас выражение «водородная бомба» долгое время было у всех на слуху и вызывало неприятный холодок в душе жителя Советского Союза. Все жили под дамокловым мечом ядерной войны, которая, как казалось, могла начаться в любой момент. В политических карикатурах журнала «Крокодил» недобрый «дядя Сэм», как правило, доставал из-за пазухи или держал в руке выразительную чёрную бомбу с эмблемой «Н», что означало «водородная», или с эмблемой «N», что означало бомбу нейтронную, представляющую более современный тип бомбы водородной. Не все понимали, что идёт речь не о самом водороде, а только о его тяжёлых изотопах, составляющих термоядерный заряд. Изобилие карикатур на эту тему привело к тому, что атомные и водородные бомбы часто попадали в детские рисунки и были причиной многих детских страхов.

В чём же секрет небывалой мощи, скрытой в тяжёлых изотопах водорода? Он заключён в высоком энергетическом эффекте реакции слияния ядер дейтерия и трития и в рекордно малой величине энергетического барьера, который необходимо преодолеть, чтобы их ядра слились. Если обычный урановый или плутониевый ядерный заряд использовать для поджигания термоядерной реакции, то его энергию можно усилить в 600 раз и более. Большое достоинство такого заряда состоит в том, что дейтерий и тритий при слиянии не только не дают долгоживущих радиоактивных продуктов, но и способствуют более полному сгоранию самого ядерного запала. И значит, термоядерное оружие при его использовании наносит значительно меньший экологический урон, оставляя меньшее радиоактивное заражение местности, чем ядерное оружие той же мощности. Это открывало не только военные, но и мирные перспективы его использования — при сооружении подземных ёмкостей-хранилищ газа, при тушении пожаров на нефтяных скважинах, а также для быстрого и относительно безопасного создания искусственных котлованов и каналов серией небольших термоядерных взрывов. Абсолютным рекордсменом среди всех видов взрывных устройств, когда-либо созданных человеком, следует назвать советскую водородную бомбу АН602, которая была испытана 30 октября 1961 года на ядерном полигоне «Сухой Нос» архипелага Новая Земля. С лёгкой руки Генерального секретаря Компартии СССР Н. С. Хрущёва эта бомба вошла во Всемирную историю под названием «Кузькина мать». Кроме того, по аналогии с Царь-пушкой и Царь-колоколом этот заряд часто называют «Царь-бомбой». Разработана она была под руководством академика АН СССР И. В. Курчатова. Её измеренная мощность в тротиловом эквиваленте составила 58,6 мегатонны.

Сколько же тяжёлых изотопов водорода в природе? Дейтерия в природе не так уж и мало. Его концентрация относительно протия составляет около 0,016% ат., но, учитывая широкую распространённость самого водорода, запасы дейтерия можно считать неисчерпаемыми. Наибольшие его количества находятся в Мировом океане; концентрация дейтерия в океанической воде также заметно выше, чем в водах рек, вследствие фракционирования изотопов воды в атмосферном водяном цикле (см. «Наука и жизнь» № 5, 2011 г., статья «Изотопная «дактилоскопия» для Шерлока Холмса»). Дейтерия в водах Мирового океана содержится даже больше, чем таких химических элементов, как фтор и йод. Природные вариации соотношения изотопов дейтерия и протия изменяются в диапазоне от 5500 до 11 000 атомов лёгкого водорода на один атом тяжёлого — это своеобразный рекорд среди природных вариаций всех стабильных изотопов. Наименьшие концентрации дейтерия наблюдаются в ледниках Антарктики, а наибольшие — в закрытых водоёмах пустыни Сахара. Трития в природе в десятки и сотни триллионов раз меньше, чем дейтерия. Из-за радиоактивного распада тритий практически отсутствует в объектах, изолированных от атмосферы, например в углеводородах нефти и природного газа. Естественная наработка трития на Земле постоянно происходит при воздействии космических лучей на ядра азота и кислорода в верхних слоях атмосферы, поэтому наиболее богаты природным тритием осадки: дождь и снег. Такая естественная наработка трития находится в равновесии с его распадом и составляет не более 7 кг на весь земной шар. Во второй половине ХХ века количество трития в природе многократно возрастало в период интенсивных испытаний термоядерного оружия. Так, при взрыве водородной бомбы мощностью одна мегатонна образуется и попадает в окружающую среду до 2 кг трития. За всё время наземных и воздушных испытаний термоядерного оружия в атмосфере накапливались сотни килограммов трития. После их запрета количество трития в земной атмосфере заметно снизилось за счёт его радиоактивного распада и сейчас не превышает десятков килограммов. Важный источник поступления трития в окружающую среду — атомные электростанции, которые ежегодно вырабатывают килограммы трития (сопоставимо с его природной наработкой). Из этого количества в окружающую среду попадает не более одной седьмой части. Как разделить изотопы водорода? Известный учёный и публицист академик И. В. Петрянов-Соколов в конце 1960-х годов, проведя несложные математические выкладки, показал, насколько утопичен миф о «накоплении тяжёлой воды» в чайнике при длительном кипячении. Чтобы получить хотя бы литр воды с обогащением по дейтерию всего в 10 раз больше природного, пришлось бы испарить такое её количество, масса которого во много раз превышает массу всей Солнечной системы. Причина — близость физико-химических свойств обычной и дейтериевой воды, малая величина коэффициента разделения этих изотопов при дистилляции. Эффективность разделения может быть значительно повышена, если использовать многоступенчатые противоточные процессы. Наиболее освоены и промышленно реализованы такие методы получения дейтерия, как ректификация жидкого водорода, двухтемпературный сероводородный метод, и метод, основанный на химическом обмене в системе «вода—водород». При получении концентрированного трития приходится считаться с его радиоактивностью. В этом случае могут быть применены лишь те методы, в которых водород присутствует в молекулярном виде, так как и вода и сероводород, содержащие тритий, сильно разлагаются вследствие авторадиолиза. При получении дейтерия в качестве исходного сырья используют природную воду. Тритий может быть получен только в реакторах, при облучении нейтронами одного из изотопов лития. Приятно отметить, что наше предприятие, АО «ВНИИНМ» им. академика А. А. Бочвара, которое ранее называлось НИИ-9, стоит у истоков создания всех отечественных тритиевых технологий. И реакторная наработка трития, и его очистка от сопутствующих примесей, и проблемы безопасности обращения с ним — все эти вопросы были в своё время успешно решены. С самого начала Атомного проекта СССР проблема получения трития была по значимости на втором месте после изготовления ядерного заряда. Тритий предстояло нарабатывать реакторным путём из лёгкого изотопа лития — 6Li. Решение этой задачи было поручено коллективу НИИ-9, состоявшему из специалистов разных направлений. С их помощью в Советском Союзе создали тритиевое производство и ныне действующее на ФГУП «ПО «Маяк» (г. Озёрск). Процессы разделения изотопов водорода в нашей стране большей частью разработаны в МХТИ (ныне — РХТУ им. Д. И. Менделеева). Там же в 1934 году А. И. Бродский получил первую советскую тяжёлую воду на специально разработанной лабораторной установке. Ежегодно кафедра технологии изотопов РХТУ даёт образование десяткам специалистов в этой области.

Наибольшее количество дейтерия в нашей стране, по-видимому, наработано методом низкотемпературной ректификации*, хотя на первом этапе для этого активно использовали очень энергозатратный способ получения тяжёлой воды электролизом. Производства дейтерия были распределены по всей стране, при этом ориентировались на наличие свободной электроэнергии и на возможность использования отходящего водорода, в частности на азотно-туковых заводах**. Одно из наиболее крупных производств дейтерия существовало в городе Чирчик; тяжёлую воду производили также в Днепродзержинске, Сталиногорске, Ленинграде, Норильске, Каменке, Березниках, Горловке и во многих других городах СССР. Меньшее распространение у нас получил двухтемпературный сероводородный метод производства тяжёлой воды, реализованный в городе Алексине, в то время как в мировом масштабе это один из основных методов её получения.

Исторически первой страной, производившей тяжёлую воду в крупнотоннажных масштабах, была Норвегия. Это связано с наличием в ней большого количества избыточной электроэнергии, необходимой для электролитического производства D2O. Принято считать, что если бы гитлеровская Германия получила в своё распоряжение запасы норвежской тяжёлой воды, то вполне могла бы успеть создать до своего разгрома собственное ядерное оружие. К счастью, этого не произошло благодаря проведённой спецоперации: парóм с норвежской тяжёлой водой, предназначенной для переправки в Германию, был уничтожен. На сегодня крупнейшие производители тяжёлой воды в мире — это Индия, Китай и Иран, активно развивающие тяжеловодное направление своей атомной энергетики. Огромными запасами тяжёлой воды владеют Канада и США, которым пришлось даже остановить ряд своих предприятий из-за перепроизводства и экологических проблем. При эксплуатации тяжеловодных АЭС Канаде приходится периодически очищать теплоноситель как от протия (он мешает ядерной реакции), так и от нарабатываемого трития (повышает радиационную нагрузку на персонал). При этом Канада попутно получает до 2 кг трития в год как ценный побочный продукт эксплуатации своих тяжеловодных АЭС. Собственное тяжеловодное производство имеет Румыния.

В нашей стране тяжёлую воду и дейтерий в настоящее время производит единственное предприятие — ПИЯФ им. Б. П. Константинова в Гатчине. В качестве исходного сырья используют запасы, накопленные в СССР. Из природного сырья дейтерий у нас в стране сейчас не выделяют.

Говоря об отечественных тритиевых технологиях, нельзя не упомянуть РФЯЦ-ВНИИЭФ (г. Саров), специалисты которого многие годы занимаются этим вопросом как в рамках оборонных задач, так и для нужд фундаментальной науки. В частности, они разработали тритиевую криомишень для получения сверхтяжёлых изотопов лёгких элементов, используемую в ОИЯИ (г. Дубна) на установке АКУЛИНА***, позволившую получить пятый изотоп водорода и до сих пор востребованную в фундаментальных исследованиях.

Где же применяют тритий и дейтерий? Так уж получилось, что открытые человеком колоссальные источники энергии деления и слияния ядер изначально предполагалось использовать для разрушения, и лишь потом было освоено их мирное использование. Кроме того, есть немало сфер применения этих изотопов, вообще не связанных с реакцией термоядерного синтеза. Один из основных отечественных потребителей трития и производителей тритиевой продукции — ФГУП «ВНИИА им. Н. Л. Духова». На этом предприятии разрабатывают и производят нейтронные генераторы — ускорительные устройства, в которых ядра дейтерия, ударяясь в мишень, вступают в ядерную реакцию с содержащимся в ней тритием. При этом выделяющиеся нейтроны имеют постоянную энергию 14,1 МэВ, а само устройство очень удобно в эксплуатации. При отсутствии ускоряющего напряжения нейтроны не излучаются (в отличие от радиоизотопных нейтронных источников), а радиоактивный тритий находится внутри нейтронной трубки и в таком виде практически безопасен (его мягкое бета-излучение не способно пробить даже лист бумаги). Нейтронные генераторы используются везде, где требуются компактные автономные источники нейтронов. Очень востребованы они у геологов, которые используют их при гео-физическом исследовании скважин методом нейтронного каротажа. (Слово «каротаж» происходит от французского слова «carotte» — морковь, что объясняется сходством формы керна, извлекаемого из земли, с морковью.) Метод нейтронной активации при этом позволяет оперативно получить полную информацию о химическом составе всех горных пород по глубине скважины, просто опустив в неё нейтронный зонд с детектором. Нейтронный генератор, изготовленный во ВНИИА, есть даже на марсоходе «Curiosity» («Кьюриосити»; в переводе с английского означает «любопытство»), в составе прибора ДАН (Детектора альбедных нейтронов), созданного в ИКИ РАН. Главная задача этого прибора — поиск воды на Марсе под толщей грунта, и уже имеются первые положительные результаты. ВНИИНМ внёс свой вклад в этот международный проект, поставив для ВНИИА мишени, насыщенные тритием. То, что тритий является мягким бета-излучателем с высокой радиоактивностью, обусловливает его использование в радиоизотопных источниках света и электроэнергии. Во многих часах и приборах со светящимися стрелками применяют люминофоры, активированные тритием. Тритиевая подсветка на оружейных прицелах существенно повышает точность стрельбы в ночное время. Сейчас АО «ВНИИНМ» по заказу Роскосмоса и под руководством ООО «Солар-Си» принимает участие в разработке отечественного бета-вольтаического источника питания на основе трития — «тритиевой батарейки». Этот источник питания нужен в тех ответственных узлах, где требуется стабильное бесперебойное электроснабжение в течение многих лет. Его создание решит актуальный вопрос импортозамещения, поскольку аналогичных источников электропитания Россия в настоящее время не производит. Наибольшие количества дейтерия потребляются атомной энергетикой. Содержащая его тяжёлая вода — один из наилучших замедлителей нейтронов, настолько эффективный, что позволяет «зажечь» реакцию деления ядер даже в уране с природным обогащением по изотопу U-235, тогда как все остальные типы ядерных реакторов требуют обогащённого урана. Использование тяжёлой воды в качестве замедлителя позволяет повысить и степень выгорания ядерного топлива. По этому пути пошла атомная энергетика Канады, которая производит для себя и строит по всему миру на заказ тяжеловодные реакторы CANDU. И дейтерий и тритий активно применяют при производстве меченых соединений. В этой продукции заинтересованы в первую очередь биологи и медики, которые с помощью изотопной метки определяют механизмы биохимических реакций. У нас меченные тритием соединения традиционно производят в Институте молекулярной генетики РАН. Самая заманчивая перспектива использования дейтерия и трития — создание управляемой термоядерной реакции. Если это удастся, человечество будет иметь в своём распоряжении неисчерпаемый источник энергии. К сожалению, эта задача оказалась чрезвычайно сложной. Более полувека в мире ведутся разработки в этой области, но всё равно мы очень далеки от создания такого термоядерного реактора, который производил бы энергии больше, чем потреблял. В настоящее время весь мир с надеждой смотрит на международный термоядерный реактор ИТЭР, создаваемый в городе Кадараш на юге Франции. С его помощью физики надеются приблизиться к созданию энергетики, использующей энергию слияния ядер трития и дейтерия, а в перспективе перейти к использованию одного дейтерия, чьи ядра могут взаимодействовать между собой. В своё время на нашем предприятии пересказывали забавную историю, как один из вновь назначенных чиновников, проходя по территории ВНИИНМ, потребовал, чтобы ему «показали тритий», и был очень возмущён тем, что этого не сделали. Ему объясняли, что тритий — это газ, который прозрачен и потому невидим, тем не менее новый босс сурово резюмировал: «Что-то у вас здесь нечисто!». Давайте попытаемся понять, можно ли изотопы водорода «увидеть»? Что касается трития, то, несомненно, да — можно, и без всяких дополнительных устройств. В концентрированном виде этот изотоп водорода даёт голубое свечение вследствие самоионизации. Поток бета-излучения трития способен при длительном контакте изменить цвет стекла, он вызывает потемнение эмульсии фотопластинок, на чём основан классический метод авторадиографического анализа, в котором по интенсивности потемнения фотоэмульсии определяют концентрацию радиоактивного изотопа. В последнее время приобретает популярность новый метод анализа трития, позволяющий визуализировать его распределение по поверхности образцов, — радиолюминография. Метод основан на образовании скрытого изображения в некоторых люминофорах под воздействием радиации. Это изображение считывается специальным лазерным сканером, причём интенсивность люминесценции пропорциональна активности образца. Концентрация трития с помощью радиолюминографии может быть представлена довольно наглядно и красочно. Радиоактивность трития даёт возможность определять даже ничтожные его количества методом жидкостной сцинтилляции, в котором определяют интенсивность свечения некоторых жидкостей, пропорциональную содержанию в них радиоактивного изотопа, и газовыми ионизационными методами, использующими свойство газовых смесей менять свои вольт-амперные характеристики при воздействии на них ионизирующего излучения. Кроме того, и дейтерий и тритий, так же как самый лёгкий из изотопов водорода протий, можно без труда «увидеть», используя современные методы атомно-эмиссионной, ИК- и масс-спектрометрии. Не стоит забывать и об опасности, которую несут тяжёлые изотопы водорода. Самая грозная и зловещая из них скрыта в термоядерном оружии, произведённом за десятилетия «холодной войны». В своё время в прессе звучали сообщения, что мощности накопленного вооружения достаточно, чтобы неоднократно уничтожить всё живое на нашей планете. Даже малая его часть в случае использования способна вызвать глобальную экологическую катастрофу, известную под названием «ядерная зима». Несомненно, важнейшая задача всего человечества — не допустить развития такого сценария в мировой истории. Но даже тот тритий, который не используется в вооружении, представляет для человека существенную опасность, так как является высокотоксичным радиоактивным изотопом. Риск облучения персонала, контактирующего с тритием, очень высок в связи с тем, что этот изотоп не удерживается современными фильтрующими системами защиты органов дыхания и способен проникать через кожу. При этом в форме тритированной воды тритий в 10 000 раз токсичнее, чем в виде молекулярного водорода, так как пары тритированной воды уже при комнатной температуре практически мгновенно обменивают изотопы водорода, моментально попадая за счёт этого в организм человека. Значительная часть трития при переработке радиоактивных отходов сбрасывается в атмосферу или попадает в Мировой океан. И обращение с отходами, содержащими тритий (особенно с низкоактивными, которых очень много), до сих пор представляет собой серьёзную проблему, ожидающую своего решения. *** Кто бы мог предугадать 100 лет назад, что самый первый и самый простой из химических элементов — водород преподнесёт нам столько сюрпризов, столько радости и страхов, надежд и разочарований? Сегодня хочется верить, что все знания, полученные человечеством, будут направлены только на созидание, а не на разрушение, а изотопы водорода со своими удивительными свой-ствами помогут нам ещё не раз заглянуть в сокровенные тайники Природы и сделать немало интересных и полезных открытий. Автор выражает благодарность Г. М. Тер-Акопьяну (ОИЯИ), А. А. Юхимчуку (РФЯЦ-ВНИИЭФ), Л. А. Ривкису, М. И. Белякову, А. Н. Букину, А. С. Аникину, Н. Е. Забировой, А. В. Лизунову и всему тритиевому отделу АО «ВНИИНМ» им. академика А. А. Бочвара, а также специалистам кафедры технологии изотопов РХТУ им. Д. И. Менделеева, особенно М. Б. Розенкевичу и Ю. С. Паку, которые оказали помощь при подготовке материала.

***

Не только тяжёлые изотопы водорода имеют собственные красивые имена. Привычный нам самый лёгкий и распространённый изотоп водорода тоже имеет специальное обозначение — протий. Все три названия этих изотопов появились ещё до открытия трития, когда Г. Юри, Д. Мерфи и Ф. Брикведде 5 июня 1933 года предложили их в письме редактору научного журнала «The Journal of Chemical Physics». Названия изотопов водорода происходят от греческих слов «protos» (первый), «deuteros» (второй) и «tritos» (третий). Интересно отметить, что название «протий» менее известно широкой общественности, чем имена тяжёлых и намного более редких его «собратьев». В последнее время в интернете появились такие названия, как «квадий», «пентий», «гексий» и «септий», отнесённые к чрезвычайно короткоживущим изотопам водорода массой от 4 до 7 и с периодами полураспада 10–22 — 10–23 с. Однако, по-видимому, эти названия не имеют под собой основы и являются одним из «фейков» интернета. В частности, профессор Г. М. Тер-Акопьян, который с коллективом ОИЯИ (г. Дубна) впервые получил в 2001 году ядра пятого изотопа водорода, названия «пентий» ему не давал и никогда не слышал упоминания такого термина в научных публикациях и на конференциях.

Комментарии к статье

* Ректификация — разделение жидких смесей на практически чистые компоненты, отличающиеся температурами кипения, путём многократных испарений жидкости и конденсации паров. Разделение сжиженных газовых смесей ректификацией проводят при очень низких температурах под избыточным давлением.

** На азотно-туковых заводах из природного газа получают дешёвые азотные удобрения.

*** Название АКУЛИНА происходит от английского «accurate line» — аккуратная (прецизионная) линия.

www.nkj.ru

От деления к синтезу: нейтронная бомба

«Популярная механика» уже писала о современном ядерном оружии («ПМ» № 1'2009) на основе зарядов деления. В этом номере — рассказ о еще более мощных боеприпасах синтеза.

За время, прошедшее после первого испытания в Аламогордо, прогремели тысячи взрывов зарядов деления, в каждом из которых добывались драгоценные знания об особенностях их функционирования. Знания эти подобны элементам мозаичного полотна, причем оказалось, что «полотно» это ограничено законами физики: снижению габаритов боеприпаса и его мощности кладет предел кинетика замедления нейтронов в сборке, а достижение энерговыделения, существенно превышающего сотню килотонн, невозможно из-за ядерно-физических и гидродинамических ограничений допустимых размеров докритической сферы. Но сделать боеприпасы более мощными все же возможно, если вместе с делением заставить «работать» ядерный синтез.

Деление плюс синтез

Топливом для синтеза служат тяжелые изотопы водорода. При слиянии ядер дейтерия и трития образуется гелий-4 и нейтрон, энергетический выход при этом — 17,6 МэВ, что в несколько раз больше, чем при реакции деления (в пересчете на единицу массы реагентов). В таком топливе при нормальных условиях не может возникнуть цепная реакция, так что количество его не ограничено, а значит, у энерговыделения термоядерного заряда нет верхнего предела.

Однако для того, чтобы началась реакция синтеза, нужно сблизить ядра дейтерия и трития, а этому мешают силы кулоновского отталкивания. Для их преодоления нужно разогнать ядра навстречу друг другу и столкнуть. В нейтронной трубке при реакции срыва на ускорение ионов высоким напряжением тратится большая энергия. А вот если разогреть топливо до очень высоких температур в миллионы градусов и сохранить его плотность на протяжении необходимого для реакции времени, оно выделит энергию куда большую, чем та, которая затрачена на нагрев. Именно благодаря этому способу реакции и оружие стали называться термоядерными (по составу топлива такие бомбы также называют водородными).

Для нагрева топлива в термоядерной бомбе — в качестве «запала» — и нужен ядерный заряд. Корпус «запала» прозрачен для мягкого рентгеновского излучения, которое при взрыве опережает разлетающееся вещество заряда и превращает в плазму ампулу, содержащую термоядерное топливо. Вещество оболочки ампулы подобрано так, что его плазма существенно расширяется, сжимая топливо к оси ампулы (такой процесс называют радиационной имплозией).

Дейтерий «примешан» к природному водороду в еще примерно впятеро меньших количествах, чем «оружейный» уран — к обычному. Но разность масс у протия и дейтерия — двойная, поэтому процессы их разделения в противоточных колоннах более эффективны. Тритий же, подобно плутонию-239, не существует в природе в ощутимых количествах, его добывают, воздействуя мощными нейтронными потоками в ядерном реакторе на изотоп лития-6, получая литий-7, который распадается на тритий и гелий-4. Как радиоактивный тритий, так и стабильный дейтерий оказались опасными веществами: подопытные животные, которым вводились соединения дейтерия, умирали с симптомами, характерными для старости (охрупчивание костей, потеря интеллекта, памяти). Этот факт послужил основой теории, в соответствии с которой смерть от старости и в естественных условиях наступает при накоплении дейтерия: через организм в процессе жизнедеятельности проходят многие тонны воды и других соединений водорода, и более тяжелые дейтериевые компоненты постепенно накапливаются в клетках. Теория объясняла и долгожительство горцев: в поле земного притяжения концентрация дейтерия действительно незначительно убывает с высотой. Однако многие соматические эффекты оказались противоречащими «дейтериевой» теории, и в итоге она была отвергнута.

Изотопы водорода — дейтерий (D) и тритий (T) — при нормальных условиях представляют собой газы, достаточные количества которых сложно «собрать» в устройстве разумных размеров. Поэтому в зарядах используют их соединения — твердые гидриды лития-6. По мере того как синтез самых «легкозажигаемых» изотопов разогревает топливо, в нем начинают протекать и другие реакции — с участием как содержавшихся в смеси, так и образовавшихся ядер: слияние двух ядер дейтерия с образованием трития и протона, гелия-3 и нейтрона, слияние двух ядер трития с образованием гелия-4 и двух нейтронов, слияние гелия-3 и дейтерия с образованием гелия-4 и протона, а также слияние лития-6 и нейтрона с образованием гелия-4 и трития, так что и литий оказывается не совсем уж «балластом».

…Плюс деление

Хотя энерговыделение двухфазного (деление + синтез) взрыва может быть сколь угодно велико, значительная его часть (для первой из упомянутых реакций — более 80%) уносится из огненного шара быстрыми нейтронами; их пробег в воздухе составляет многие километры, и поэтому они не вносят вклад во взрывные эффекты.

Если же необходим именно взрывной эффект, в термоядерном боеприпасе реализуется еще и третья фаза, для чего ампула окружается тяжелой оболочкой из урана-238. Нейтроны, испускаемые при распаде этого изотопа, имеют слишком малую энергию для поддержания цепной реакции, но зато уран-238 делится под действием «внешних» высокоэнергетичных термоядерных нейтронов. Нецепное деление в урановой оболочке дает прибавку энергии огненного шара, иногда превышающую даже вклад термоядерных реакций! На каждый килограмм веса трехфазных изделий приходится несколько килотонн тротилового эквивалента — они существенно превосходят по удельным характеристикам другие классы ядерного оружия.

Однако у трехфазных боеприпасов есть очень неприятная особенность — повышенный выход осколков деления. Конечно, двухфазные боеприпасы тоже загрязняют местность нейтронами, вызывающими практически во всех элементах ядерные реакции, не прекращающиеся и спустя многие годы после взрыва (так называемая наведенная радиоактивность), осколками деления и остатками «запалов» (в процессе взрыва «расходуется» всего 10−30% плутония, остальное разлетается по окрестностям), но трехфазные превосходят их в этом отношении. Превосходят настолько, что некоторые боеприпасы даже выпускались в двух вариантах: «грязных» (трехфазных) и менее мощных «чистых» (двухфазных) для применения на территории, где предполагались действия своих войск. Например, американская авиабомба В53 выпускалась в двух идентичных по внешнему виду вариантах: «грязном» В53Y1 (9 Мт) и «чистом» варианте В53Y2 (4,5 Мт).

Виды ядерных взрывов: 1. Космический. Применяется на высоте более 65 км для поражения космических целей. 2. Наземный. Производится на поверхности земли или на такой высоте, когда светящаяся область касается грунта. Применяется для разрушения наземных целей. 3. Подземный. Производится ниже уровня земли. Характерен сильным заражением местности. 4. Высотный. Применяется на высоте от 10 до 65 км для поражения воздушных целей. Для наземных объектов опасен только воздействием на электро- и радиоприборы. 5. Воздушный. Производится на высотах от нескольких сотен метров до нескольких километров. Радиоактивное заражение местности практически отсутствует. 6. Надводный. Производится на поверхности воды или на такой высоте, когда световая область касается воды. Характерен ослаблением действия светового излучения и проникающей радиации. 7. Подводный. Производится под водой. Световое излучение и проникающая радиация практически отсутствует. Вызывает сильное радиоактивное заражение воды.

Факторы взрыва

Из энергии 202 МэВ, которую поставляет каждый акт деления, мгновенно выделяются: кинетическая энергия продуктов деления (168 МэВ), кинетическая энергия нейтронов (5 МэВ), энергия гамма-излучения (4,6 МэВ). Благодаря этим факторам ядерное оружие и господствует на поле боя. Если взрыв происходит в сравнительно плотном воздухе, две трети его энергии переходит в ударную волну. Почти весь остаток забирает световое излучение, оставляя лишь десятую часть проникающей радиации, а из этого мизера лишь 6% достается сотворившим взрыв нейтронам. Существенную энергию (11 МэВ) уносят с собой нейтрино, но они настолько неуловимы, что найти им и их энергии практическое применение не удается до сих пор.

Со значительным запаздыванием после взрыва выделяются энергия бета-излучения продуктов деления (7 МэВ) и энергия гамма-излучения продуктов деления (6 МэВ). Эти факторы отвечают за радиоактивное заражение местности — явление, весьма опасное для обеих сторон.

Действие ударной волны понятно, поэтому и мощность ядерного взрыва стали оценивать, сравнивая со взрывом обычной взрывчатки. Не были необычными и эффекты, вызываемые мощной вспышкой света: горели деревянные постройки, получали ожоги солдаты. А вот эффекты, не превращающие цель в головешки или тривиальную, не вызывающую возмущения груду развалин — быстрые нейтроны и жесткое гамма-излучение — конечно же, считались «варварством».

Прямое действие гамма-излучения уступает по боевому эффекту и ударной волне, и свету. Лишь огромные дозы гамма-излучения (десятки миллионов рад) могут причинить неприятности электронике. При таких дозах плавятся металлы, а ударная волна с куда меньшей плотностью энергии уничтожит цель без подобных излишеств. Если плотность энергии гамма-излучения меньше, оно становится безвредным для стальной техники, а ударная волна и тут может сказать свое слово.

С «живой силой» тоже не все очевидно: во‑первых, гамма-излучение существенно ослабляется, например, броней, а во-вторых — особенности радиационных поражений таковы, что даже получившие абсолютно смертельную дозу в тысячи бэр (биологический эквивалент рентгена, доза любого вида излучения, производящая такое же действие в биологическом объекте, как 1 рентген) экипажи танков оставались бы боеспособными в течение нескольких часов. За это время подвижные и сравнительно малоуязвимые машины успели бы сделать многое.

Смерть электронике

Хотя прямое гамма-облучение существенного боевого эффекта не обеспечивает, он возможен за счет вторичных реакций. В результате рассеяния гамма-квантов на электронах атомов воздуха (Комптон-эффект) возникают электроны отдачи. От точки взрыва расходится ток электронов: их скорость существенно выше, чем скорость ионов. Траектории заряженных частиц в магнитном поле Земли закручиваются (а значит, двигаются с ускорением), формируя при этом электромагнитный импульс ядерного взрыва (ЭМИ ЯВ).

В постоянной готовности Любое соединение, содержащее тритий, нестабильно, потому что половина ядер этого изотопа сама по себе распадается на гелий-3 и электрон за 12 лет, и чтобы поддерживать готовность многочисленных термоядерных зарядов к применению, необходимо непрерывно нарабатывать тритий в реакторах. В нейтронной трубке трития немного, и гелий-3 поглощается там специальными пористыми материалами, а вот из ампулы этот продукт распада надо откачивать насосом, иначе ее просто разорвет давлением газа. Подобные трудности привели, например, к тому, что английские специалисты, получив в 1970-х годах из США ракеты Polaris, предпочли отказаться от американского термоядерного боевого оснащения в пользу разработанных в своей стране по программе Chevaline менее мощных однофазных зарядов деления. В предназначенных для борьбы с танками нейтронных боеприпасах была предусмотрена замена ампул с существенно уменьшившимся количеством трития на «свежие», производимая в арсеналах в процессе хранения. Могли такие боеприпасы применяться и с «холостыми» ампулами — как однофазные ядерные снаряды килотонной мощности. Можно использовать термоядерное топливо и без трития, только на основе дейтерия, но тогда, при прочих равных условиях, энерговыделение существенно снизится. Схема работы трехфазного термоядерного боеприпаса. Взрыв заряда деления (1) превращает ампулу (2) в плазму, сжимающую термоядерное топливо (3). Для усиления взрывного эффекта за счет потока нейтронов используется оболочка (4) из урана-238.

В энергию ЭМИ ЯВ переходит лишь 0,6% энергии гамма-квантов, а ведь их доля в балансе энергии взрыва сама по себе мала. Вклад вносит и дипольное излучение, возникающее за счет изменения плотности воздуха с высотой, и возмущение магнитного поля Земли проводящим плазмоидом. В результате образуется непрерывный частотный спектр ЭМИ ЯВ — совокупность колебаний огромного числа частот. Существенен энергетический вклад излучения с частотами от десятков килогерц до сотен мегагерц. Эти волны ведут себя по‑разному: мегагерцевые и более высокочастотные затухают в атмосфере, а низкочастотные — «ныряют» в естественный волновод, образованный поверхностью Земли и ионосферой, и могут не раз обогнуть земной шар. Правда, «долгожители» эти напоминают о своем существовании лишь хрипением в приемниках, похожим на «голоса» грозовых разрядов, а вот их более высокочастотные родственники заявляют о себе мощными и опасными для аппаратуры «щелчками».

Казалось бы, такие излучения вообще должны быть безразличны военной электронике — ведь любое устройство с наибольшей эффективностью принимает волны того диапазона, в каком их излучает. А принимает и излучает военная электроника в гораздо более высокочастотных, чем ЭМИ ЯВ, диапазонах. Но ЭМИ ЯВ действует на электронику не через антенну. Если ракету длиной в 10 м «накрывала» длинная волна с не поражающей воображение напряженностью электрического поля в 100 В/см, то на металлическом ракетном корпусе наводилась разность потенциалов в 100 000 В! Мощные импульсные токи через заземляющие связи «затекают» в схемы, да и сами точки заземления на корпусе оказывались под существенно отличающимися потенциалами. Токовые перегрузки опасны для полупроводниковых элементов: для того чтобы «сжечь» высокочастотный диод, достаточно импульса мизерной (в десятимиллионную долю джоуля) энергии. ЭМИ занял почетное место могущественного поражающего фактора: иногда им выводилась из строя аппаратура за тысячи километров от ядерного взрыва — такое было не по силам ни ударной волне, ни световому импульсу.

Понятно, параметры вызывающих ЭМИ взрывов были оптимизированы (в основном высота подрыва заряда данной мощности). Разрабатывались и меры защиты: аппаратура снабжалась дополнительными экранами, охранными разрядниками. Ни один образец боевой техники не принимался на вооружение, пока не была доказана испытаниями — натурными или на специально созданных имитаторах — его стойкость к ЭМИ ЯВ, по крайней мере такой интенсивности, которая характерна для не слишком уж больших дистанций от взрыва.

Бесчеловечное оружие

Однако вернемся к двухфазным боеприпасам. Их основной поражающий фактор — потоки быстрых нейтронов. Это породило многочисленные легенды о «варварском оружии» — нейтронных бомбах, которые, как писали в начале 1980-х советские газеты, при взрыве уничтожают все живое, а материальные ценности (здания, технику) оставляют практически неповрежденными. Настоящее мародерское оружие — взорвал, а потом приходи и грабь! На самом деле любые предметы, подвергшиеся воздействию значительных нейтронных потоков, опасны для жизни, потому что нейтроны после взаимодействия с ядрами инициируют в них разнообразные реакции, становящиеся причиной вторичного (наведенного) излучения, которое испускается в течение длительного времени после того, как распадется последний из облучавших вещество нейтронов.

Для чего же было предназначено это «варварское оружие»? Двухфазными термоядерными зарядами оснащались боевые части ракет Lance и 203-мм гаубичные снаряды. Выбор носителей и их досягаемость (десятки километров) указывают на то, что создавалось это оружие для решения оперативно-тактических задач. Нейтронные боеприпасы (по американской терминологии — «с повышенным выходом радиации») предназначались для поражения бронетехники, по численности которой Варшавский пакт превосходил НATO в несколько раз. Танк достаточно стоек к воздействию ударной волны, поэтому после расчетов применения ядерного оружия различных классов против бронетехники, с учетом последствий заражения местности продуктами деления и разрушений от мощных ударных волн, основным поражающим фактором решили сделать нейтроны.

В стремлении получить такой термоядерный заряд попытались отказаться от ядерного «запала», заменив деление сверхскоростной кумуляцией: головной элемент струи, состоявшей из термоядерного топлива, разогнали до сотни километров в секунду (в момент столкновения температура и плотность значительно возрастают). Но на фоне взрыва килограммового кумулятивного заряда «термоядерная» прибавка оказалась ничтожной, и эффект зарегистрировали лишь косвенно — по выходу нейтронов. Отчет об этих проведенных в США экспериментах был опубликован в 1961 году в сборнике «Атом и оружие», что при тогдашней параноидальной секретности само по себе свидетельствовало о неудаче. В семидесятых, в «неядерной» Польше, Сильвестр Калиский теоретически рассмотрел сжатие термоядерного топлива сферической имплозией и получил весьма благоприятные оценки. Но экспериментальная проверка показала, что, хотя выход нейтронов, по сравнению со «струйным вариантом», возрос на много порядков, нестабильности фронта не позволяют достичь нужной температуры в точке схождения волны и реагируют только те частицы топлива, скорость которых, из-за статистического разброса, значительно превышает среднее значение. Так что совсем «чистый» заряд создать не удалось.

Рассчитывая остановить навал «брони», в штабах НАТО разработали концепцию «борьбы со вторыми эшелонами», стараясь отнести подальше рубеж применения нейтронного оружия по противнику. Основная задача бронетанковых войск — развитие успеха на оперативную глубину, после того как их бросят в брешь в обороне, пробитую, например, ядерным ударом большой мощности. В этот момент применять радиационные боеприпасы уже поздно: хотя 14-МэВ нейтроны незначительно поглощаются броней, поражения экипажей излучением сказываются на боеспособности не сразу. Поэтому такие удары планировались по выжидательным районам, где изготавливались к введению в прорыв основные массы бронетехники: за время марша к линии фронта на экипажах должны были проявиться последствия облучения.

Еще одним применением нейтронных боеприпасов стал перехват ядерных боеголовок. Перехватить боевой блок противника надо на большой высоте, чтобы даже в случае его подрыва не пострадали объекты, на которые он нацелен. Но отсутствие вокруг воздуха лишает противоракету возможности поразить цель ударной волной. Правда, при ядерном взрыве в безвоздушном пространстве возрастает преобразование его энергии в световой импульс, но помогает это мало, поскольку боевой блок рассчитан на преодоление теплового барьера при входе в атмосферу и снабжен эффективным обгорающим (абляционным) теплозащитным покрытием. Нейтроны же свободно «проскакивают» через такие покрытия, а проскочив, бьют в «сердце» боевого блока — сборку, содержащую делящееся вещество. Ядерный взрыв при этом невозможен — сборка докритична, но нейтроны порождают в плутонии много затухающих цепей деления. Плутоний, который и при нормальных условиях из-за самопроизвольно протекающих ядерных реакций имеет ощутимую при касании повышенную температуру, при мощном внутреннем подогреве плавится, деформируется, а значит, уже не сможет превратиться в нужный момент в сверхкритическую сборку.

Такими двухфазными термоядерными зарядами оснащены американские противоракеты Sprint, охраняющие шахты межконтинентальных баллистических ракет. Конусная форма ракет позволяет выдерживать огромные перегрузки, возникающие во время старта и при последующем маневрировании.

Автор статьи с 1984 по 1997 год возглавлял лабораторию специальных боеприпасов ЦНИИ химии и механики. В этом году в издательстве «Моркнига» вышла его книга «Огонь!», посвященная таким боеприпасам

Page 2
«Популярная механика» уже писала о современном ядерном оружии («ПМ» № 1'2009) на основе зарядов деления. В этом номере — рассказ о еще более мощных боеприпасах синтеза.

За время, прошедшее после первого испытания в Аламогордо, прогремели тысячи взрывов зарядов деления, в каждом из которых добывались драгоценные знания об особенностях их функционирования. Знания эти подобны элементам мозаичного полотна, причем оказалось, что «полотно» это ограничено законами физики: снижению габаритов боеприпаса и его мощности кладет предел кинетика замедления нейтронов в сборке, а достижение энерговыделения, существенно превышающего сотню килотонн, невозможно из-за ядерно-физических и гидродинамических ограничений допустимых размеров докритической сферы. Но сделать боеприпасы более мощными все же возможно, если вместе с делением заставить «работать» ядерный синтез.

Деление плюс синтез

Топливом для синтеза служат тяжелые изотопы водорода. При слиянии ядер дейтерия и трития образуется гелий-4 и нейтрон, энергетический выход при этом — 17,6 МэВ, что в несколько раз больше, чем при реакции деления (в пересчете на единицу массы реагентов). В таком топливе при нормальных условиях не может возникнуть цепная реакция, так что количество его не ограничено, а значит, у энерговыделения термоядерного заряда нет верхнего предела.

Однако для того, чтобы началась реакция синтеза, нужно сблизить ядра дейтерия и трития, а этому мешают силы кулоновского отталкивания. Для их преодоления нужно разогнать ядра навстречу друг другу и столкнуть. В нейтронной трубке при реакции срыва на ускорение ионов высоким напряжением тратится большая энергия. А вот если разогреть топливо до очень высоких температур в миллионы градусов и сохранить его плотность на протяжении необходимого для реакции времени, оно выделит энергию куда большую, чем та, которая затрачена на нагрев. Именно благодаря этому способу реакции и оружие стали называться термоядерными (по составу топлива такие бомбы также называют водородными).

Для нагрева топлива в термоядерной бомбе — в качестве «запала» — и нужен ядерный заряд. Корпус «запала» прозрачен для мягкого рентгеновского излучения, которое при взрыве опережает разлетающееся вещество заряда и превращает в плазму ампулу, содержащую термоядерное топливо. Вещество оболочки ампулы подобрано так, что его плазма существенно расширяется, сжимая топливо к оси ампулы (такой процесс называют радиационной имплозией).

Дейтерий «примешан» к природному водороду в еще примерно впятеро меньших количествах, чем «оружейный» уран — к обычному. Но разность масс у протия и дейтерия — двойная, поэтому процессы их разделения в противоточных колоннах более эффективны. Тритий же, подобно плутонию-239, не существует в природе в ощутимых количествах, его добывают, воздействуя мощными нейтронными потоками в ядерном реакторе на изотоп лития-6, получая литий-7, который распадается на тритий и гелий-4. Как радиоактивный тритий, так и стабильный дейтерий оказались опасными веществами: подопытные животные, которым вводились соединения дейтерия, умирали с симптомами, характерными для старости (охрупчивание костей, потеря интеллекта, памяти). Этот факт послужил основой теории, в соответствии с которой смерть от старости и в естественных условиях наступает при накоплении дейтерия: через организм в процессе жизнедеятельности проходят многие тонны воды и других соединений водорода, и более тяжелые дейтериевые компоненты постепенно накапливаются в клетках. Теория объясняла и долгожительство горцев: в поле земного притяжения концентрация дейтерия действительно незначительно убывает с высотой. Однако многие соматические эффекты оказались противоречащими «дейтериевой» теории, и в итоге она была отвергнута.

Изотопы водорода — дейтерий (D) и тритий (T) — при нормальных условиях представляют собой газы, достаточные количества которых сложно «собрать» в устройстве разумных размеров. Поэтому в зарядах используют их соединения — твердые гидриды лития-6. По мере того как синтез самых «легкозажигаемых» изотопов разогревает топливо, в нем начинают протекать и другие реакции — с участием как содержавшихся в смеси, так и образовавшихся ядер: слияние двух ядер дейтерия с образованием трития и протона, гелия-3 и нейтрона, слияние двух ядер трития с образованием гелия-4 и двух нейтронов, слияние гелия-3 и дейтерия с образованием гелия-4 и протона, а также слияние лития-6 и нейтрона с образованием гелия-4 и трития, так что и литий оказывается не совсем уж «балластом».

…Плюс деление

Хотя энерговыделение двухфазного (деление + синтез) взрыва может быть сколь угодно велико, значительная его часть (для первой из упомянутых реакций — более 80%) уносится из огненного шара быстрыми нейтронами; их пробег в воздухе составляет многие километры, и поэтому они не вносят вклад во взрывные эффекты.

Если же необходим именно взрывной эффект, в термоядерном боеприпасе реализуется еще и третья фаза, для чего ампула окружается тяжелой оболочкой из урана-238. Нейтроны, испускаемые при распаде этого изотопа, имеют слишком малую энергию для поддержания цепной реакции, но зато уран-238 делится под действием «внешних» высокоэнергетичных термоядерных нейтронов. Нецепное деление в урановой оболочке дает прибавку энергии огненного шара, иногда превышающую даже вклад термоядерных реакций! На каждый килограмм веса трехфазных изделий приходится несколько килотонн тротилового эквивалента — они существенно превосходят по удельным характеристикам другие классы ядерного оружия.

Однако у трехфазных боеприпасов есть очень неприятная особенность — повышенный выход осколков деления. Конечно, двухфазные боеприпасы тоже загрязняют местность нейтронами, вызывающими практически во всех элементах ядерные реакции, не прекращающиеся и спустя многие годы после взрыва (так называемая наведенная радиоактивность), осколками деления и остатками «запалов» (в процессе взрыва «расходуется» всего 10−30% плутония, остальное разлетается по окрестностям), но трехфазные превосходят их в этом отношении. Превосходят настолько, что некоторые боеприпасы даже выпускались в двух вариантах: «грязных» (трехфазных) и менее мощных «чистых» (двухфазных) для применения на территории, где предполагались действия своих войск. Например, американская авиабомба В53 выпускалась в двух идентичных по внешнему виду вариантах: «грязном» В53Y1 (9 Мт) и «чистом» варианте В53Y2 (4,5 Мт).

Виды ядерных взрывов: 1. Космический. Применяется на высоте более 65 км для поражения космических целей. 2. Наземный. Производится на поверхности земли или на такой высоте, когда светящаяся область касается грунта. Применяется для разрушения наземных целей. 3. Подземный. Производится ниже уровня земли. Характерен сильным заражением местности. 4. Высотный. Применяется на высоте от 10 до 65 км для поражения воздушных целей. Для наземных объектов опасен только воздействием на электро- и радиоприборы. 5. Воздушный. Производится на высотах от нескольких сотен метров до нескольких километров. Радиоактивное заражение местности практически отсутствует. 6. Надводный. Производится на поверхности воды или на такой высоте, когда световая область касается воды. Характерен ослаблением действия светового излучения и проникающей радиации. 7. Подводный. Производится под водой. Световое излучение и проникающая радиация практически отсутствует. Вызывает сильное радиоактивное заражение воды.

Факторы взрыва

Из энергии 202 МэВ, которую поставляет каждый акт деления, мгновенно выделяются: кинетическая энергия продуктов деления (168 МэВ), кинетическая энергия нейтронов (5 МэВ), энергия гамма-излучения (4,6 МэВ). Благодаря этим факторам ядерное оружие и господствует на поле боя. Если взрыв происходит в сравнительно плотном воздухе, две трети его энергии переходит в ударную волну. Почти весь остаток забирает световое излучение, оставляя лишь десятую часть проникающей радиации, а из этого мизера лишь 6% достается сотворившим взрыв нейтронам. Существенную энергию (11 МэВ) уносят с собой нейтрино, но они настолько неуловимы, что найти им и их энергии практическое применение не удается до сих пор.

Со значительным запаздыванием после взрыва выделяются энергия бета-излучения продуктов деления (7 МэВ) и энергия гамма-излучения продуктов деления (6 МэВ). Эти факторы отвечают за радиоактивное заражение местности — явление, весьма опасное для обеих сторон.

Действие ударной волны понятно, поэтому и мощность ядерного взрыва стали оценивать, сравнивая со взрывом обычной взрывчатки. Не были необычными и эффекты, вызываемые мощной вспышкой света: горели деревянные постройки, получали ожоги солдаты. А вот эффекты, не превращающие цель в головешки или тривиальную, не вызывающую возмущения груду развалин — быстрые нейтроны и жесткое гамма-излучение — конечно же, считались «варварством».

Прямое действие гамма-излучения уступает по боевому эффекту и ударной волне, и свету. Лишь огромные дозы гамма-излучения (десятки миллионов рад) могут причинить неприятности электронике. При таких дозах плавятся металлы, а ударная волна с куда меньшей плотностью энергии уничтожит цель без подобных излишеств. Если плотность энергии гамма-излучения меньше, оно становится безвредным для стальной техники, а ударная волна и тут может сказать свое слово.

С «живой силой» тоже не все очевидно: во‑первых, гамма-излучение существенно ослабляется, например, броней, а во-вторых — особенности радиационных поражений таковы, что даже получившие абсолютно смертельную дозу в тысячи бэр (биологический эквивалент рентгена, доза любого вида излучения, производящая такое же действие в биологическом объекте, как 1 рентген) экипажи танков оставались бы боеспособными в течение нескольких часов. За это время подвижные и сравнительно малоуязвимые машины успели бы сделать многое.

Смерть электронике

Хотя прямое гамма-облучение существенного боевого эффекта не обеспечивает, он возможен за счет вторичных реакций. В результате рассеяния гамма-квантов на электронах атомов воздуха (Комптон-эффект) возникают электроны отдачи. От точки взрыва расходится ток электронов: их скорость существенно выше, чем скорость ионов. Траектории заряженных частиц в магнитном поле Земли закручиваются (а значит, двигаются с ускорением), формируя при этом электромагнитный импульс ядерного взрыва (ЭМИ ЯВ).

В постоянной готовности Любое соединение, содержащее тритий, нестабильно, потому что половина ядер этого изотопа сама по себе распадается на гелий-3 и электрон за 12 лет, и чтобы поддерживать готовность многочисленных термоядерных зарядов к применению, необходимо непрерывно нарабатывать тритий в реакторах. В нейтронной трубке трития немного, и гелий-3 поглощается там специальными пористыми материалами, а вот из ампулы этот продукт распада надо откачивать насосом, иначе ее просто разорвет давлением газа. Подобные трудности привели, например, к тому, что английские специалисты, получив в 1970-х годах из США ракеты Polaris, предпочли отказаться от американского термоядерного боевого оснащения в пользу разработанных в своей стране по программе Chevaline менее мощных однофазных зарядов деления. В предназначенных для борьбы с танками нейтронных боеприпасах была предусмотрена замена ампул с существенно уменьшившимся количеством трития на «свежие», производимая в арсеналах в процессе хранения. Могли такие боеприпасы применяться и с «холостыми» ампулами — как однофазные ядерные снаряды килотонной мощности. Можно использовать термоядерное топливо и без трития, только на основе дейтерия, но тогда, при прочих равных условиях, энерговыделение существенно снизится. Схема работы трехфазного термоядерного боеприпаса. Взрыв заряда деления (1) превращает ампулу (2) в плазму, сжимающую термоядерное топливо (3). Для усиления взрывного эффекта за счет потока нейтронов используется оболочка (4) из урана-238.

В энергию ЭМИ ЯВ переходит лишь 0,6% энергии гамма-квантов, а ведь их доля в балансе энергии взрыва сама по себе мала. Вклад вносит и дипольное излучение, возникающее за счет изменения плотности воздуха с высотой, и возмущение магнитного поля Земли проводящим плазмоидом. В результате образуется непрерывный частотный спектр ЭМИ ЯВ — совокупность колебаний огромного числа частот. Существенен энергетический вклад излучения с частотами от десятков килогерц до сотен мегагерц. Эти волны ведут себя по‑разному: мегагерцевые и более высокочастотные затухают в атмосфере, а низкочастотные — «ныряют» в естественный волновод, образованный поверхностью Земли и ионосферой, и могут не раз обогнуть земной шар. Правда, «долгожители» эти напоминают о своем существовании лишь хрипением в приемниках, похожим на «голоса» грозовых разрядов, а вот их более высокочастотные родственники заявляют о себе мощными и опасными для аппаратуры «щелчками».

Казалось бы, такие излучения вообще должны быть безразличны военной электронике — ведь любое устройство с наибольшей эффективностью принимает волны того диапазона, в каком их излучает. А принимает и излучает военная электроника в гораздо более высокочастотных, чем ЭМИ ЯВ, диапазонах. Но ЭМИ ЯВ действует на электронику не через антенну. Если ракету длиной в 10 м «накрывала» длинная волна с не поражающей воображение напряженностью электрического поля в 100 В/см, то на металлическом ракетном корпусе наводилась разность потенциалов в 100 000 В! Мощные импульсные токи через заземляющие связи «затекают» в схемы, да и сами точки заземления на корпусе оказывались под существенно отличающимися потенциалами. Токовые перегрузки опасны для полупроводниковых элементов: для того чтобы «сжечь» высокочастотный диод, достаточно импульса мизерной (в десятимиллионную долю джоуля) энергии. ЭМИ занял почетное место могущественного поражающего фактора: иногда им выводилась из строя аппаратура за тысячи километров от ядерного взрыва — такое было не по силам ни ударной волне, ни световому импульсу.

Понятно, параметры вызывающих ЭМИ взрывов были оптимизированы (в основном высота подрыва заряда данной мощности). Разрабатывались и меры защиты: аппаратура снабжалась дополнительными экранами, охранными разрядниками. Ни один образец боевой техники не принимался на вооружение, пока не была доказана испытаниями — натурными или на специально созданных имитаторах — его стойкость к ЭМИ ЯВ, по крайней мере такой интенсивности, которая характерна для не слишком уж больших дистанций от взрыва.

Бесчеловечное оружие

Однако вернемся к двухфазным боеприпасам. Их основной поражающий фактор — потоки быстрых нейтронов. Это породило многочисленные легенды о «варварском оружии» — нейтронных бомбах, которые, как писали в начале 1980-х советские газеты, при взрыве уничтожают все живое, а материальные ценности (здания, технику) оставляют практически неповрежденными. Настоящее мародерское оружие — взорвал, а потом приходи и грабь! На самом деле любые предметы, подвергшиеся воздействию значительных нейтронных потоков, опасны для жизни, потому что нейтроны после взаимодействия с ядрами инициируют в них разнообразные реакции, становящиеся причиной вторичного (наведенного) излучения, которое испускается в течение длительного времени после того, как распадется последний из облучавших вещество нейтронов.

Для чего же было предназначено это «варварское оружие»? Двухфазными термоядерными зарядами оснащались боевые части ракет Lance и 203-мм гаубичные снаряды. Выбор носителей и их досягаемость (десятки километров) указывают на то, что создавалось это оружие для решения оперативно-тактических задач. Нейтронные боеприпасы (по американской терминологии — «с повышенным выходом радиации») предназначались для поражения бронетехники, по численности которой Варшавский пакт превосходил НATO в несколько раз. Танк достаточно стоек к воздействию ударной волны, поэтому после расчетов применения ядерного оружия различных классов против бронетехники, с учетом последствий заражения местности продуктами деления и разрушений от мощных ударных волн, основным поражающим фактором решили сделать нейтроны.

В стремлении получить такой термоядерный заряд попытались отказаться от ядерного «запала», заменив деление сверхскоростной кумуляцией: головной элемент струи, состоявшей из термоядерного топлива, разогнали до сотни километров в секунду (в момент столкновения температура и плотность значительно возрастают). Но на фоне взрыва килограммового кумулятивного заряда «термоядерная» прибавка оказалась ничтожной, и эффект зарегистрировали лишь косвенно — по выходу нейтронов. Отчет об этих проведенных в США экспериментах был опубликован в 1961 году в сборнике «Атом и оружие», что при тогдашней параноидальной секретности само по себе свидетельствовало о неудаче. В семидесятых, в «неядерной» Польше, Сильвестр Калиский теоретически рассмотрел сжатие термоядерного топлива сферической имплозией и получил весьма благоприятные оценки. Но экспериментальная проверка показала, что, хотя выход нейтронов, по сравнению со «струйным вариантом», возрос на много порядков, нестабильности фронта не позволяют достичь нужной температуры в точке схождения волны и реагируют только те частицы топлива, скорость которых, из-за статистического разброса, значительно превышает среднее значение. Так что совсем «чистый» заряд создать не удалось.

Рассчитывая остановить навал «брони», в штабах НАТО разработали концепцию «борьбы со вторыми эшелонами», стараясь отнести подальше рубеж применения нейтронного оружия по противнику. Основная задача бронетанковых войск — развитие успеха на оперативную глубину, после того как их бросят в брешь в обороне, пробитую, например, ядерным ударом большой мощности. В этот момент применять радиационные боеприпасы уже поздно: хотя 14-МэВ нейтроны незначительно поглощаются броней, поражения экипажей излучением сказываются на боеспособности не сразу. Поэтому такие удары планировались по выжидательным районам, где изготавливались к введению в прорыв основные массы бронетехники: за время марша к линии фронта на экипажах должны были проявиться последствия облучения.

Еще одним применением нейтронных боеприпасов стал перехват ядерных боеголовок. Перехватить боевой блок противника надо на большой высоте, чтобы даже в случае его подрыва не пострадали объекты, на которые он нацелен. Но отсутствие вокруг воздуха лишает противоракету возможности поразить цель ударной волной. Правда, при ядерном взрыве в безвоздушном пространстве возрастает преобразование его энергии в световой импульс, но помогает это мало, поскольку боевой блок рассчитан на преодоление теплового барьера при входе в атмосферу и снабжен эффективным обгорающим (абляционным) теплозащитным покрытием. Нейтроны же свободно «проскакивают» через такие покрытия, а проскочив, бьют в «сердце» боевого блока — сборку, содержащую делящееся вещество. Ядерный взрыв при этом невозможен — сборка докритична, но нейтроны порождают в плутонии много затухающих цепей деления. Плутоний, который и при нормальных условиях из-за самопроизвольно протекающих ядерных реакций имеет ощутимую при касании повышенную температуру, при мощном внутреннем подогреве плавится, деформируется, а значит, уже не сможет превратиться в нужный момент в сверхкритическую сборку.

Такими двухфазными термоядерными зарядами оснащены американские противоракеты Sprint, охраняющие шахты межконтинентальных баллистических ракет. Конусная форма ракет позволяет выдерживать огромные перегрузки, возникающие во время старта и при последующем маневрировании.

Автор статьи с 1984 по 1997 год возглавлял лабораторию специальных боеприпасов ЦНИИ химии и механики. В этом году в издательстве «Моркнига» вышла его книга «Огонь!», посвященная таким боеприпасам

www.popmech.ru

ТРИТИЙ

Содержание статьи

ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С.

В погоне за тритием.

Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.

Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.

В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!

После неудач спектроскопистов в поиски включились специалисты по масс-спектрометрии. Этот чрезвычайно чувствительный метод позволяет анализировать ничтожные количества вещества в виде ионов. Для опытов воду сконцентрировали в 225 тысяч раз. Исследователи надеялись найти в образце ионы (DT)+ с массой 5. Ионы с такой массой были обнаружены, но оказалось, что они принадлежат трехатомным частицам (НDD)+, без какого-либо участия трития. Стало очевидным, что трития, если он и присутствует в природе, намного меньше, чем думали раньше: не больше, чем 1:5·108, то есть уже 1 атом Т на 500 миллионов атомов Н!

Синтез трития.

Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.

В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций Nh5Cl + D2O Nh4DCl + HDO, Nh4DCl + D2O Nh3D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.

В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.

Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.

Таким образом, для обнаружения трития надо было еще больше увеличить степень концентрирования воды. Но это требовало уже гигантских затрат. К решению проблемы подключили самого Резерфорда. Используя свой огромный авторитет, он обратился с личной просьбой к норвежцам, чтобы они провели невиданный доселе по масштабам эксперимент: получили бы тяжелую воду, сконцентрировав обычную в миллиард раз! Сначала было подвергнуто электролизу 13 000 тонн обычной воды, из которых получили 43,4 кг тяжелой воды с содержанием D2O 99,2%. Далее это количество путем почти 10-месячного электролиза уменьшили до 11 мл. Условия электролиза были выбраны так, чтобы способствовать концентрированию предполагаемого трития. Таким образом, из 13 тысяч тонн воды (а это 5 железнодорожных составов по 50 цистерн в каждом!) была получена всего одна пробирка обогащенной воды. Мир не знал еще столь грандиозных опытов!

Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.

Обнаружение природного трития.

Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.

При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.

Для отработки методов анализа трития потребовались значительные его количества. Поэтому стали появляться новые способы его синтеза, например, 9Be + 2H ® 8Be + 3H, 6Li + 1n ® 4He + 3H и другие. А точность анализа чрезвычайно повысилась. Стало возможным, например, анализировать образцы, в которых происходил всего один распад атома трития в секунду – в таком образце трития содержится меньше, чем 10–15 моль! Теперь в руках физиков был исключительно чувствительный метод анализа – в довоенные годы он был примерно в миллион раз чувствительнее, чем масс-спектрометрический. Настало время вернуться к поискам трития в природных источниках.

Тритий в природе.

В 1946 известный авторитет в области ядерной физики, лауреат Нобелевской премии У.Ф.Либби предположил, что тритий непрерывно образуется в результате идущих в атмосфере ядерных реакций. Первые измерения радиоактивности природного водорода, хотя и были неудачными, показали, что отношение Н:Т на 5 порядков меньше, чем думали раньше и составляет не более 1:1017. Стала очевидной невозможность обнаружения трития масс-спектрометрически даже при самых больших обогащениях: к началу 50-х годов масс-спектрометры позволяли определять концентрации примесей при их содержании не менее 10–4%.

В 1951 группа американских физиков из Чикагского университета с участием У.Либби достала хранившуюся «резерфордовскую» ампулу с 11 мл сверхобогащенной тяжелой воды, в которой Астон когда-то пытался обнаружить тритий масс-спектрометрически. И хотя с момента выделения этого образца из природной воды прошло полтора десятка лет и от содержащегося в нем трития осталось меньше половины, результат не заставил себя ждать: тяжелая вода была радиоактивна! Измеренная активность с учетом обогащения при получении образца соответствовала природному содержанию трития 1:1018.

Чтобы застраховаться от возможной ошибки, решили повторить все с самого начала, тщательно следя за каждым шагом этого решающего эксперимента. Авторы попросили норвежскую компанию приготовить еще несколько образцов обогащенной воды. Воду взяли из горного озера на севере Норвегии в январе 1948. Из нее путем электролитического концентрирования получили 15 мл тяжелой воды. Ее перегнали и ввели в реакцию с оксидом кальция: СаО + D2O ® Ca(OD)2. Восстановлением цинком при температуре красного каления из дейтероксида кальция получили дейтерий: Ca(OD)2 + Zn ® CaZnO2 + D2. Масс-спектрометрический анализ показал, что получен чистейший дейтерий, который и запустили в счетчик Гейгера для измерения его радиоактивности. Газ оказался радиоактивным, а это означало, что вода, из которой был выделен дейтерий, содержала тритий. Аналогично было приготовлено и проанализировано еще несколько образцов, чтобы уточнить, сколько же трития содержится на самом деле в природном водороде.

Исключительная тщательность работы не оставляла никаких сомнений в полученных результатах. Но еще за год до окончания этой работы вышла статья Ф.Фалтингса и того же П.Хартека из Физико-химического института при Гамбургском университете, в которой сообщалось об обнаружении трития в атмосферном водороде. Таким образом, Хартек дважды участвовал в открытии трития: сначала – искусственного, а через 16 лет – природного.

Воздух – не самый богатый источник водорода – его в нем всего 0,00005% (на уровне моря). Поэтому по заказу немецких физиков фирма «Линде» переработала сто тысяч кубометров воздуха, из которого путем сжижения и ректификации был выделен водород, а из него окислением на оксиде меди получено 80 г воды. С помощью электролиза эта вода была сконцентрирована в несколько десятков раз, затем ею был «погашен» карбид кальция: CaC2 + 2h3O ® Ca(OH)2 + С2h3, а ацетилен прогидрирован оставшимся водородом до этана: С2Н2 + 2Н2 ® С2Н6. Полученный этан, в который переходил весь исходный тритий, затем анализировали на радиоактивность. Расчет показал, что в воздухе трития (в виде молекул НТ) исключительно мало: в 20 куб. см воздуха содержится одна молекула трития, т.е. во всей атмосфере его должно быть всего... 1 моль или 3 г. Однако если учесть, что водорода в воздухе исключительно мало, то получается, что атмосферный молекулярный водород обогащен тритием в 10 000 раз больше, чем водород в составе дождевой воды. Отсюда следовало, что свободный и связанный водород в атмосфере имеют разное происхождение. Подсчет показал также, что во всех водоемах Земли трития содержится всего лишь 100 кг.

Значение, полученное в Чикаго для содержания трития в воде (Н:Т = 1:1018), стало общепринятым. Такое содержание атомов трития получило даже специальное название – «тритиевая единица» (ТЕ). В 1 л воды в среднем содержится 3,2·10–10 г трития, в 1 л воздуха – 1,6·10–14 г (при абсолютной влажности 10 мг/л). Образуется тритий в верхних слоях атмосферы с участием космического излучения со скоростью 1200 атомов в секунду в расчете на 1 м2 земной поверхности. Таким образом, в течение тысячелетий содержание трития в природе было почти постоянным – непрерывное его образование в атмосфере компенсировалось естественным распадом. Однако с 1954 (начало испытаний термоядерных бомб) положение резко изменилось и в дождевой воде содержание трития увеличилось в тысячи раз. И это не удивительно: взрыв водородной бомбы мощностью 1 мегатонна (Мт) приводит к выделению от 0,7 до 2 кг трития. Общая мощность воздушных взрывов составила за 1945–1962. 406 Мт, а наземных – 104 Мт. При этом общее количество трития, поступившее в биосферу в результате испытаний, составило сотни килограммов! После прекращения наземных испытаний уровень трития пошел на убыль. В последние годы основным источником техногенного трития в окружающей среде стали атомные электростанции, которые ежегодно выделяют несколько десятков килограммов трития.

Современные радиохимические методы позволяют с большой точностью определять содержание трития в сравнительно небольшом количестве воды, взятой из того или иного источника. Для чего это нужно? Оказывается, радиоактивный тритий с весьма удобным временем жизни – чуть больше 10 лет – может дать много ценной информации. У.Либби назвал тритий «радиоводородом», по аналогии с радиоуглеродом. Тритий может служить прекрасной меткой для изучения различных природных процессов. С его помощью можно определять возраст растительных продуктов, например, вин (если им не больше 30 лет), поскольку виноград поглощает тритий из почвенных вод, а после снятия урожая содержание трития в виноградном соке начинает снижаться с известной скоростью. Сам Либби провел множество подобных анализов, переработав сотни литров различных вин, поставленных ему виноделами из разных местностей. Анализ атмосферного трития дает ценную информацию о космических лучах. А тритий в осадочных породах может свидетельствовать о перемещениях воздуха и влаги на Земле.

Наиболее богатые природные источники трития – дождь и снег, поскольку почти весь тритий, образующийся под действием космических лучей в атмосфере, переходит в воду. Интенсивность космической радиации изменяется с широтой, поэтому осадки, например, в средней полосе России несут в несколько раз больше трития, чем тропические ливни. И совсем мало трития в дождях, которые идут над океаном, поскольку их источник – в основном та же океаническая вода, а ней трития немного. Понятно, что глубинный лед Гренландии или Антарктиды совсем не содержит трития – он там давно успел полностью распасться. Зная скорость образования трития в атмосфере, можно рассчитать, как долго влага находится в воздухе – с момента ее испарения с поверхности до выпадения в виде дождя или снега. Оказалось, что, например, в воздухе над океаном этот срок составляет в среднем 9 дней.

Запасы природного трития ничтожны. Поэтому весь тритий, используемый для различных целей, получают искусственно, путем облучения лития нейтронами. В результате стало возможным получить значительные количества чистого трития и изучить его свойства, а также свойство его соединений. Так, сверхтяжелая вода Т2О имеет плотность 1,21459 г/см3. Синтезированный тритий сравнительно дешев и находит применение в научных исследованиях и в промышленности. Широкое применение нашли тритиевые светящиеся краски, которые наносят на шкалы приборов. Эти светосоставы с точки зрения радиации менее опасны, чем традиционные радиевые. Например, сульфид цинка, содержащий небольшое количество соединений трития (примерно 0,03 мг на 1 г светосостава), непрерывно излучает зеленый свет. Такие светосоставы постоянного действия используют для изготовления указателей, шкал приборов и т.п. На их производство ежегодно расходуют сотни граммов трития.

Тритий присутствует и в человеческом организме. Он поступает в него с пищей, с вдыхаемым воздухом и через кожу (12%). Интересно, что газообразный Т2 в 500 раз менее токсичен, чем сверхтяжелая вода Т2О. Это объясняется тем, что молекулярный тритий, попадая с воздухом в легкие, затем быстро (примерно за 3 мин) выделяется из организма, тогда как тритий в составе воды задерживается в нем на 10 суток и успевает за это время передать ему значительную дозу радиации. В среднем организм человека содержит 5·10–12 г трития, что дает вклад 0,13 мбэр в общую дозу годового облучения (это в сотни раз меньше облучения от других источников радиации). Интересно, что у людей, носящих часы, в которых стрелки и цифры покрыты тритиевым люминофором, содержание трития в теле в 5 раз выше среднего.

А еще тритий является одним из основных компонентов взрывчатого вещества термоядерных (водородных) бомб, а также весьма перспективен для проведения управляемой термоядерной реакции по схеме D + T > 4He + n.

Илья Леенсон

www.krugosvet.ru

Тритий - Химия

Еще совсем недавно люди считали, что атом – это цельная неделимая частица. Позднее стало ясно, что он состоит из ядра и вращающихся вокруг него электронов. При этом центральная часть снова считалась неделимой и цельной.

Сегодня мы знаем, что она состоит из протонов и нейтронов. Причем, в зависимости от числа последних, у одного и того же вещества может быть несколько изотопов.

Итак, тритий – что это такое? Что это за вещество, как его получить и использовать?

Тритий – что это такое?

Водород – самое простое вещество в природе. Если говорить про его самую распространенную форму, о которой подробнее будет сказано чуть ниже, то его атом состоит лишь из одного протона и одного электрона.

Однако он может принимать и “лишние” частицы, которые несколько меняют его свойства. Так, ядро трития состоит из протона и двух нейтронов.

И если протий, то есть самая простая форма водорода – это самый распространенный во вселенной элемент, то про его “улучшенную” версию этого не скажешь – в природе он встречается в незначительных количествах.

Изотоп водорода тритий (название происходит от греческого слова “третий”) был открыт в 1934 году Резерфордом, Олифантом и Хартеком. И на самом деле, найти его пытались очень долго и упорно.

Сразу после открытия дейтерия и тяжелой воды в 1932 году ученые стали искать этот изотоп с помощью повышения чувствительности спектрального анализа при изучении обычного водорода.

Однако, несмотря ни на что, их попытки были тщетны – даже в самых концентрированных образцах не удавалось получить даже намек на присутствие вещества, которое было просто обязано существовать. Но в итоге поиски все-таки увенчались успехом – Олифант синтезировал элемент с помощью тяжелой воды в лаборатории Резерфорда.

Если коротко, то определение трития звучит следующим образом: радиоактивный изотоп водорода, ядро которого состоит из протона и двух нейтронов. Итак, что о нем известно?

Об изотопах водорода

Первый элемент периодической таблицы является одновременно наиболее распространенным во Вселенной. При этом в природе он встречается в виде одного из трех своих изотопов: протия, дейтерия или трития.

Ядро первого состоит из одного протона, что и дало ему название. Кстати, это единственный стабильный элемент, у которого отсутствуют нейтроны. Следующим в ряду изотопов водорода является дейтерий.

Ядро его атома состоит из протона и нейтрона, а название восходит к греческому слову “второй”.

В лаборатории были получены также еще более тяжелые изотопы водорода с массовыми числами от 4 до 7. Период их полураспада ограничивается долями секунд.

Свойства

Атомная масса трития составляет примерно 3,02 а. е. м. По своим физическим свойствам это вещество почти не отличается от обычного водорода, то есть в нормальных условиях является легким газом без цвета, вкуса и запаха, обладает высокой теплопроводностью.

При температуре около -250 градусов по Цельсию становится легкой и текучей бесцветной жидкостью. Диапазон, в пределах которых он находится в данном агрегатном состоянии довольно узок. Температура плавления составляет около 259 градусов по Цельсию, ниже которой водород становится снегоподобной массой.

Кроме того, этот элемент довольно хорошо растворяется в некоторых металлах.

Однако есть и некоторые отличия в свойствах. Во-первых, третий изотоп обладает меньшей реакционной способностью, а во-вторых, тритий радиоактивен и в связи с этим нестоек. Период полураспада составляет чуть более 12 лет. В процессе радиолиза он превращается в третий изотоп гелия с испусканием электрона и антинейтрино.

Получение

В природе тритий содержится в незначительных количествах и образуется чаще всего в верхних слоях атмосферы при соударении космических частиц и, например, атомов азота. Однако существует и промышленный метод получения этого элемента с помощью облучения лития-6 нейтронами в ядерных реакторах.

Синтез трития в объеме, масса которого составляет около 1 килограмма, обходится примерно в 30 миллионов долларов.

Использование

Итак, мы немного больше узнали про тритий – что это такое и его свойства. Но зачем он нужен? Разберемся чуть ниже. По некоторым данным мировая коммерческая потребность в тритии составляет порядка 500 граммов в год, еще около 7 килограмм уходит на военные нужды.

По данным американского института исследований энергетики и окружающей среды, с 1955 по 1996 год в США было произведено 2,2 центнера сверхтяжелого водорода. А на 2003 год общие запасы этого элемента составляли около 18 килограмм. Для чего же они используются?

Во-первых, тритий необходим для поддержания боеспособности ядерного оружия, которым, как известно, пока еще обладают некоторые страны. Во-вторых, без него не обходится термоядерная энергетика. Еще тритий используется в некоторых научных исследованиях, например, в геологии с его помощью датируют природные воды.

Еще одно назначение – источник питания подсветки в часах. Кроме того, в настоящее время проводятся эксперименты по созданию радиоизотопных генераторов сверхмалой мощности, например, для питания автономных датчиков. Ожидается, что в этом случае срок их службы составит около 20 лет.

Стоимость такого генератора составит порядка одной тысячи долларов.

В качестве оригинальных сувениров также существуют брелки с небольшим количеством трития внутри. Они издают свечение и выглядят довольно экзотично, особенно если знать о внутреннем содержании.

Опасность

Тритий радиоактивен, именно этим объясняется часть его свойств и видов использования. Его период полураспада составляет около 12 лет, при этом образуется гелий-3 с испусканием антинейтрино и электрона. В процессе этой реакции выделяется 18,59 кВт энергии и бета-частицы распространяются в воздухе.

Обывателю может показаться странным, что радиоактивный изотоп используется, скажем, для подсветки в часах, ведь это может быть опасным, разве нет? На самом деле тритий едва ли чем-то угрожает человеческому здоровью, поскольку бета-частицы в процессе его распада распространяются максимум на 6 миллиметров и не могут преодолеть простейшие преграды. Впрочем, это не значит, что работа с ним абсолютно безопасна – любое попадание внутрь с пищей, воздухом или впитывание через кожу может привести к проблемам. Хотя в большинстве случаев он легко и быстро выводится, так бывает не всегда. Итак, тритий – что это такое с точки зрения радиационной опасности?

Меры защиты

Несмотря на то что малая энергия распада трития не позволяет радиации серьезно распространяться, так что бета-частицы не могут преодолеть даже кожу, не стоит пренебрегать своим здоровьем.

При работе с этим изотопом можно, конечно, не использовать костюм радиационной защиты, но элементарные правила, такие как закрытая одежда и хирургические перчатки, соблюдать необходимо.

Поскольку основную опасность тритий представляет при попадании внутрь, важно пресечь деятельность, при которой это станет возможным. В остальном беспокоиться не о чем.

Если все же он в большом количестве поступил в ткани организма, может развиться, острая или хроническая лучевая болезнь в зависимости от длительности, дозы и регулярности воздействия. В некоторых случаях этот недуг успешно излечивается, но при обширных поражениях возможен летальный исход.

В любом нормальном организме есть следы трития, хоть они и абсолютно незначительны и едва ли влияют на радиационный фон. Ну а у любителей часов со светящимися стрелками его уровень выше в несколько раз, хотя и все равно считается безопасным.

Сверхтяжелая вода

Тритий, как и обычный водород, может образовывать новые вещества. В частности, он входит в молекулу так называемой сверхтяжелой (супертяжелой) воды. Свойства этого вещества не слишком отличаются от привычной каждому человеку h3O.

При том, что тритиевая вода также может участвовать в метаболизме, она отличается довольно высокой токсичностью и выводится в течение десятидневного срока, за который ткани могут получить довольно высокую степень облучения.

И хотя данное вещество менее опасно само по себе, оно является более опасным в связи с периодом, на протяжении которого находится в организме.

Источник: http://fb.ru/article/225425/tritiy---chto-eto-takoe-massa-tritiya

Тритий: что это такое, особенности, свойства и производство

Энергия реакций распада и синтеза в ядре атома давно нашла применение в науке и технике. Она используется в промышленности, оружии, геологии, на атомных электростанциях.

Процессы ядерных реакций могут приносить как пользу, так и огромный вред.

В статье речь пойдет о том, что это такое – тритий, как он добывается, о его использовании в атомной энергетике и какие опасности связаны с его применением.

Изотопы водорода

Прежде чем объяснить, что это такое тритий, необходимо познакомиться с понятием изотопа.

Атом любого вещества состоит из ядра и электронов (отрицательно заряженных частиц), движущихся по орбитам вокруг него. Ядро атома содержит положительно заряженные частицы – протоны, и частицы с нейтральным зарядом – нейтроны.

В обычном атоме число электронов и протонов совпадает, а вот количество нейтронов может отличаться. В этом случае элементы, имеющие разное число нейтронов в ядре, называются изотопами элемента.

Водород имеет заряд 1, то есть в нем содержится один электрон и один протон. Его изотопы – протий, дейтерий и тритий. Слово “протий” образовано от греческого слова “первый”. Этот элемент имеет лишь один протон в ядре. По сути, он представляет собой привычный нам водород.

Дейтерий означает “второй”. В его ядре имеется один протон и один нейтрон. А тритий переводится как “третий” и содержит в ядре опять же один протон, но два нейтрона.

Краткий ответ на вопрос “Тритий – что это такое?” выглядит так: это третий изотоп химического элемента водорода.

Названия для изотопов 1Н и 2Н – протия и дейтерия – были предложены американским физиком Гарольдом Юри. Обнаружив существование дейтерия, ученые сразу предположили наличие третьего изотопа водорода, имеющего два нейтрона в ядре.

Юри для исследований использовал метод спектрального анализа. Однако результатов он не дал. Оказалось, что концентрация трития слишком мала, чтобы его можно было обнаружить традиционными способами. В природе это вещество практически невозможно найти.

Поэтому для исследований стали использоваться другие методы, например, масс-спектрометрия.

В 1934 году Эрнест Резерфорд сумел искусственно получить третий изотоп при помощи ядерных реакций. Само собой, название было выбрано заранее, и, по аналогии с протием и дейтерием, он стал называться тритием.

Дефект масс и энергия связи трития

Одним из ключевых в физике элементарных частиц является понятие энергии связи атомных ядер. Под энергией связи ядра трития понимают то количество энергии, которое необходимо, чтобы произошло расщепление его ядра на отдельные нуклоны. Поскольку ядра удерживаются так называемым сильным взаимодействием, требуется большое количество энергии, чтобы их расщепить.

Чтобы высчитать энергию связи ядра, необходимо знать массу субатомных частиц. Известно, что масса покоя ядра меньше суммарной массы нуклонов в его составе. Разницу между массами ядра и суммами его нуклонов называют дефектом масс.

Дефект массы трития, как и других ядер, рассчитывается по формуле:

Δm = (Z*mp + N*mn) – Мя, где

Z – число протонов;

N – число нейтронов;

mp – масса протона;

mn – масса нейтрона;

Мя – масса ядра.

Удельная энергия связи для элемента трития составляет 2 827,2 кэВ на нуклон.

Тритий в природе

Количество этого изотопа в природе является ничтожным. Связано это с его радиоактивностью, то есть нестабильностью ядра.

В природе он вырабатывается в основном в верхних слоях атмосферы. Его формирование осуществляется при сталкивании частиц космических лучей с ядрами атомов, например, азота. Поскольку тритий образуется в атмосфере, его источники на Земле – осадки (дождь и снег).

По подсчетам ученых, в чистом виде трития на Земле содержится едва ли более 1 кг. Поэтому его вырабатывают искусственно, в лабораторных условиях.

В настоящее время получение данного изотопа не представляет трудностей, но является чрезвычайно дорогостоящим процессом. Для изготовления одного килограмма вещества требуются затраты в размере 30 млн долларов.

В качестве сырья используют чаще всего литий. Реже – бериллий или бор. Литий подвергают нейтронному облучению на циклотроне. Затем его растворяют в воде, получая водород, в составе которого имеется тритий. Половина лития приходит в негодность в результате этого процесса и отравляется в утиль.

Для получения водорода с тритием из бериллия и бора их обрабатывают серной кислотой.

Еще одним способом получения изотопа является облучение тяжелой воды дейтронами. Тяжелая вода – вещество, образующееся из дейтерия (другое название – оксид дейтерия). После облучения такую воду подвергают электролизу и затем извлекают тритий.

В настоящее время элемент производится в основном на территории США, Канады и России.

Тритий является радиоактивным. При его распаде выделяется бета-излучение, представляющее собой поток электронов.

При внешнем облучении организма тритий не наносит серьезного вреда. Однако при попадании внутрь с водой, пищей или воздухом он может нанести существенный ущерб здоровью.

Дело в том, что являясь изотопом водорода, тритий способен замещать его в химических соединениях. Таким образом, он попадает внутрь живых клеток и встраивается в их структуру.

Это сказывается на генетической информации клетки.

Как было сказано, в природе тритий практически не встречается, поэтому едва ли может нанести вред живым организмам. Однако предприятия атомной промышленности становятся источником искусственной выработки этого изотопа. Атомные электростанции выбрасывают тритий в жидком и газообразном состоянии.

Причина этого в том, что изотоп практически не фильтруется. В год на АЭС образуется до 4 кг трития. Результатом выбросов становится радиоактивное загрязнение почвы, воздуха и воды. Таким образом, он является потенциальным источником заражения живых организмов.

Именно поэтому тритий был занесен в список контролируемых параметров при оценке качества питьевой воды.

Применение

Основное направление использования трития – атомная промышленность. Дело в том, что реакция слияния дейтерия и трития приводит к управляемому термоядерному синтезу.

Энергия связи трития настолько велика, что в ходе термоядерных реакций вырабатывается в огромном количестве, в разы больше, чем при реакциях распада атомных ядер, поэтому управляемые термоядерные реакции могут стать главным источником энергии на Земле на многие годы.

В связи с этим ученые в настоящее время работают над строительством термоядерного реактора, в котором процессы синтеза ядер происходили бы в крупных масштабах. Наиболее известный проект такого реактора – строящийся в настоящее время ITER (ИТЭР) во Франции.

Производство трития может успешно применяться для военных целей, например, при создании термоядерного оружия.

С использованием трития изготавливаются специальные светящиеся краски. Это обусловлено радиолюминесценцией – явлением свечения элемента при радиоактивном распаде. Светящиеся краски наносят на шкалы приборов, а также используются для изготовления брелоков и часов. Количество трития в них не настолько велико, чтобы нести угрозу для здоровья.

Тритий применяется в качестве индикатора химических реакций.

Наконец, этот изотоп используется для определения возраста объектов, которым не более 100 лет, например, вин.

Итак, что это такое – тритий? Выводы:

  1. Тритий – изотоп водорода, имеющий в ядре один протон и два нейтрона.
  2. Изотоп практически не встречается в природе, но успешно производится в лабораториях.
  3. Тритий радиоактивен, и его использование может принести человечеству и пользу, и вред.

Источник: https://www.nastroy.net/post/tritiy-chto-eto-takoe-osobennosti-svoystva-i-proizvodstvo

Тритиевые брелки и радиация от них

Популярные тритиевые брелки вызывают множество споров: кто-то в восторге от ярких, компактных и «вечно» светящихся изделий, а кто-то говорит об их радиоактивности и опасности для здоровья.

Производители же уверены в безопасности своей продукции и предлагают тритиевые маркеры в качестве альтернативных источников света, не теряющих яркости свечения на протяжении 25лет.

Кому же верить? Попробуем разобраться.

Что такое тритий?

Природный тритий (Т или Н-3) – сверхтяжелый радиоизотоп водорода с периодом полураспада 12,5 лет. Он постоянно образуется в атмосфере при взаимодействии нейтронов вторичного космического облучения с ядрами кислорода, азота или аргона.

Изотоп быстро переходит в молекулы обычной воды, содержащейся в воздухе, а затем в виде дождей выпадает на землю. В биосфере его содержится чрезвычайно мало – не более 2 кг, причем большая часть (90%) радионуклида сконцентрирована в воде.

Техногенный тритий получают путем облучения нейронами изотопов лития-6 или урана и плутония в атомных реакторах. Эта технология отличается трудоемкостью и дороговизной – синтез 1 кг трития обходится в 30 миллионов долларов. Он может быть также выделен и концентрирован в процессе очистки тяжелой воды, используемой в атомных реакторах в качестве замедлителя.

Секрет свечения тритиевых брелоков

Свечение брелока обеспечивается подсветкой на основе газообразного трития, которая по своей яркости превосходит остальные светосоставы постоянного действия. Главный компонент светоэлемента – прозрачная запаянная трубочка из карбонатного стекла, изнутри покрытая люминесцирующим составом и заполненная газообразным тритием.

Радионуклид испускает бета-электроны, которые бомбардируют люминофор и вызывают яркое свечение. Брелок способен равномерно светиться в течение 12 лет без подзарядки, поскольку период полураспада трития составляет 12,5 лет, а время полного разложения этого радиоактивного изотопа – 25 лет.

То есть и спустя гарантированный срок брелоки будут светиться, далее интенсивность светового излучения трития падает, но не более чем на 40%.

Токсичность газообразного трития

Газообразный тритий – важный биологический радиоизотоп, испускающий слабое бета-излучение. Из-за малой длины пробега – не более 5,8 мм, бета-частицы трития разрушаются в воздухе или полностью задерживаются кожей человека. В большей степени изотоп опасен при попадании внутрь организма во время дыхания или приема пищи и еды.

Излучаемые им электроны низкой энергии создают повышенную ионизацию вокруг себя, вызывая повреждение биологических тканей и органов. Негативное воздействие также оказывает тормозное рентгеновское излучение, которое возникает при торможении испускаемых тритием электронов в электростатистическом поле люминофора.

И хоть оно ослабляется стеклом, но все же, дает излучение до 10 мкР/ч на расстоянии одного сантиметра.

Первые световые элементы на основе трития

Первой компанией, начавшей в 1918 году использовать тритиевый газ в качестве основы для люминесцентной краски, стала компания Mb-microtec AG (Швейцария).К сожалению, полученная тритиевая краска быстро разлагалась и вступала во взаимодействие с водой, образуя высокорадиоактивную тритиевую воду.

После долгих поисков компания создала технологию GTLS и начала выпускать газовые тритиевые источники света под маркой Trigalight. Тригалайт представляет собой боросиликатную трубку диаметром 12 мм и длиной 1,5 метра. В процессе изготовления источников она вытягивается на специальном станке, разработанном и запатентованном специалистами компании.

В результате получается до 120 полуметровых стекленных колбочек шириной 0,5 мм.

Каждая из них изнутри покрывается светоотражающей краской и заполняется тритиевым газом. Поскольку от его количества зависит яркость свечения и срок службы готового тригалайта, в емкости закачивается как можно больше газа.

На заключительном этапе длинные трубки, заполненные тритием, разрезаются лазером на кусочки, концы при этом моментально запаиваются. После резки готовые тригалайты проверяются на герметичность оператором в темной комнате.

Ежегодно компания Mb-microtec AG выпускает до 10 миллионов тригалайтов разных размеров и цветов, которые используются для подсветки не только брелоков, но и информационных табличек, морских компасов, портативных фонариков, циферблатов и стрелок ручных часов.

Тритиевая подсветка, размещенная на прицеле ручного огнестрельного оружия, решила проблему с точностью наведения, возникающую при ведении ночной стрельбы.

Яркие тригалайты успешно используются ведущими производителями боевого оружия: Калашников, Kriss, Glock, Beretta.

Помимо компании Mb-microtec AG подобные источники света выпускаются канадской фирмой SRBT, ими оснащается подсветка коридоров коммерческих и военных самолетов.

Альтернативные тритиевые светосоставы Существуют другие источники постоянного света на основе трития.

В таких светосоставах, формулы которых держатся производителями в секрете, он находится виде тритированных смол, жирных кислот или поверхностно-активных веществ, связанных с люминофором.

Однако, самосветящиеся тритиевые краски не используются в тритиевых брелоках, поскольку они значительно уступают по яркости свечения тригалайту и более опасны в радиационном плане.

Тригалайт – безопасная люминесцентная альтернатива

Световые источники тригалайт фиксируются в изделиях таким образом, что при соблюдении термических и механических условий эксплуатации, становится маловероятной поломка капсулы и утечка газообразного трития. Многочисленные исследования подтвердили безопасность этих светоисточников вследствие малого размера капсул и прочного карбонатного стекла, а также их соответствие международному стандарту качества ISO 9001.

К сожалению, сегодня рынок наводнен дешевыми тритиевыми брелоками, сделанными в Китае. В них используются стеклянные капсулы, похожие на тригалайты, но дающие превышение радиационного фона в несколько раз.

Специалисты предполагают, что китайские фабрики вместо трития используют другой, более дешевый газообразный изотоп, который испускает более сильное бета-излучение и негативно влияет на здоровье человека.

Тритиевый брелок: опасен или нет?

Тритий всегда присутствует в организме человека, поступая вместе с пищей, воздухом и через кожу.

Находясь в газообразном состоянии, он не представляет большой опасности, посколькуобразующиеся при распаде трития бета-частицы обладают слабым проникающим действием и быстро поглощаются воздушным слоем толщиной 5 мм.

Если он и попадает в легкие, то очень быстро, буквально за три минуты выводится из организма. Намного опасней для организма водный раствор трития.

Так называемая тритиевая вода в 500 раз токсичнее, чем газообразный радионуклид, поскольку задерживается в организме до десяти дней и успевает передать значительную дозу радиации органам и тканям.

Внутреннее облучение еще опасно тем, что тритий легко замещает водород в белках, жирах и углеводах, проникая в протоплазму клетки.

Образуемые им бета-частицы, хоть и отличаются малым пробегом, но способны повреждать генетический аппарат клетки и внутренние органы человека.

Интересный факт В среднем организм человека содержит 5х10-12грамм трития. Но у людей, носящих часы с циферблатом, покрытым тритиевым люминофором, эта норма превышена в 5 раз!

Чем измерить радиоактивное излучение тритиевого брелока?

Газообразный тритий действительно излучает слабое бета-излучение, которое способен уловить не каждый дозиметр.

Для этого нужен прибор с чувствительным счетчиком Гейгера, например, дозиметр RADEX RD1008 или дозиметр-радиометр РАДЭКС МКС-1009.

В данных приборах установлены счетчики Гейгера-Мюллера БЕТА-2 (с слюдяным окном) и БЕТА-2М.

Источник: https://www.quarta-rad.ru/useful/ekologia-zdorovie/tritievye-brelki-radiaciya/

Тритий

тритий водорода, тритий лишнийТри́тий (др.-греч. τρίτος «третий»), сверхтяжёлый водород, обозначается символами T и 3H — радиоактивный изотоп водорода. Ядро трития состоит из протона и двух нейтронов, его называют тритоном и обозначают t.

В природе тритий образуется в верхних слоях атмосферы при соударении частиц космического излучения с ядрами атомов, например, азота. В процессе распада тритий превращается в 3He с испусканием электрона и антинейтрино (бета-распад), период полураспада — 12,32 года.

Доступная энергия распада очень мала (18,59 кэВ), средняя энергия электронов 5,7 кэВ.

Тритий открыт английскими учёными Эрнестом Резерфордом, Маркусом Олифантом и Паулем Хартеком в 1934 году.

Используется в биологии и химии как радиоактивная метка, в экспериментах по исследованию свойств нейтрино, в термоядерном оружии как источник нейтронов и одновременно термоядерное горючее, в геологии для датирования природных вод. Промышленный тритий получают облучением лития-6 нейтронами в ядерных реакторах по следующей реакции:

.

Радиационная опасность трития

Тритий имеет период полураспада (12,32 ± 0,02) года. Реакция распада трития имеет следующий вид:

.

При этом выделяется 18,59 кэВ энергии, из них на электрон (бета-частицу) приходится в среднем 5,7 кэВ, а на электронное антинейтрино — оставшаяся часть. Образовавшиеся бета-частицы распространяются в воздухе всего на 6,0 мм и не могут преодолеть даже верхний слой кожи человека.

В силу малой энергии распада трития, испускаемые электроны хорошо задерживаются даже простейшими преградами типа одежды или резиновых хирургических перчаток.

Тем не менее, этот изотоп представляет радиационную опасность при вдыхании, поглощении с пищей, впитывании через кожу.

Единичный случай употребления тритиевой воды не приводит к длительному накоплению трития в организме, так как его период полувыведения — от 7 до 14 дней.

Производство и потребность

По данным отчета Institute for Energy and Environmental Research 1996 года, в США с 1955 года было произведено около 225 кг трития. Из-за распада и использования, от них сохранилось не более 75 кг.

В конце 20-начале 21 века наработка ведется на Watts Bar-1 путем облучения TPBAR (англ. tritium-producing burnable absorber rods), планируется также использование АЭС Секвойя.

Переработка и выделение трития происходит на Tritium Extraction Facility», Саванна-Ривер.

В СССР и России тритий производился на реакторах АИ, АВ-3, ОК-180, ОК-190, РУСЛАН, Л-2; изотоп выделяется на заводе РТ-1 (ПО «Маяк»).

Значительные количества трития, до 2,5-3,5 кг, для гражданских применений производит Канада на 21 тяжеловодном реакторе. Выделение изотопа — компания «Онтарио Хайдро», Дарлингтон.

Мировая коммерческая потребность в тритии на 1995 год составляет ежегодно около 400 г, и ещё порядка 2 кг требовалось для поддержания ядерного арсенала США (7 кг для всех мировых военных потребителей). Около 4 кг трития в год образуется на АЭС, но не извлекается.

Большие количества трития потребуются для термоядерной энергетики, например, для запуска ITER потребуется как минимум около 3 кг трития, для запуска DEMO понадобится 4-10 кг. Гипотетический тритиевый реактор потреблял бы 56 кг трития на производство 1 ГВт·года электроэнергии, тогда как всемирные запасы трития на 2003 год составляли всего 18 кг.

Интересные факты

Тритиевый брелок, свечение в темноте (снимок с длительной экспозицией).

Примечания

  1. ↑ 1234 G. Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729: 337—676. DOI:10.1016/j.nuclphysa.2003.11.003. Bibcode: 2003NuPhA.729..337A.
  2. ↑ 123 G. Audi, O. Bersillon, J. Blachot and A. H.

    Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729: 3–128. DOI:10.1016/j.nuclphysa.2003.11.001. Bibcode: 2003NuPhA.729….3A.

  3. ↑ http://energy.gov/sites/prod/files/2013/09/f2/hdbk1079.pdf
  4. ↑ Nuclide safety data sheet: Hydrogen-3. ehso.emory.edu.
  5. ↑ Backgrounder on Tritium, Radiation Protection Limits, and Drinking Water Standards (англ.). U.S.NRC (февраль 2011). Проверено 5 октября 2012. Архивировано из первоисточника 14 октября 2012.
  6. ↑ R. V. Osborne.

    Review of the Greenpeace report: «Tritium Hazard Report: Pollution and Radiation Risk from Canadian Nuclear Facilities» (англ.) (pdf). Canadian Nuclear Association (август 2007). Проверено 5 октября 2012. Архивировано из первоисточника 14 октября 2012.

  7. ↑ Zerriffi, Hisham.

    Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy's decision to produce tritium. Institute for Energy and Environmental Research (January 1996). Проверено 15 сентября 2010. полный текст

  8. ↑ МИХАИЛ СТОРОЖЕВОЙ. Третируемый тритий. ATOMINFO.RU (28.10.2010). Проверено 13 ноября 2013.
  9. ↑ Производство плутония и трития для ядерного оружия. Стратегическое ядерное вооружение СССР и России.. Проверено 13 ноября 2013.
  10. ↑ Бекман. 6. РЕАКТОРЫ ДЛЯ НАРАБОТКИ ТРИТИЯ. Проверено 13 ноября 2013.
  11. ↑ Martin В. Kalinowski, Lars С.

    Colschen International Control of Tritium to Prevent Horizontal Proliferation and to Foster Nuclear Disarmament // Science & Global Security, 1994, vol. 5, рр. 131—203  (рус.)

  12. ↑ Hisham Zerriffi. Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy’s decision to produce tritium.

    Institute for Energy and Environmental Research (1996). Проверено 13 ноября 2013.

  13. ↑ International Control of Tritium for Nuclear Nonproliferation and Disarmament, CRC Press, 2004, page 15
  14. ↑ 12 Tritium Supply Considerations, LANL, 2003.

    «ITER startup inventory estimated to be ~3 Kg»

  15. ↑ BBC News — Is fusion power really viable?
  16. ↑ НЕЗАМЕНИМЫЕ БАТАРЕЙКИ: СИЛА ТРИТИЯ, Популярная Механика (27.08.12). Проверено 13 ноября 2013. «Размерами с фалангу пальца, они используют радиоактивный распад для производства электричества – в небольших количествах, зато непрерывно в течение минимум лет двадцати. … цена остается пока на уровне 1000 долларов».

Ссылки

тритий, тритий википедия, тритий водорода, тритий лишний, тритий лишний 2

Тритий Информацию О

Тритий

ТритийТритий Вы просматриваете субъектТритий что, Тритий кто, Тритий описание

There are excerpts from wikipedia on this article and video

Наш сайт имеет систему в функции поисковой системы. Выше: “что вы искали?”вы можете запросить все в системе с коробкой. Добро пожаловать в нашу простую, стильную и быструю поисковую систему, которую мы подготовили, чтобы предоставить вам самую точную и актуальную информацию.

Поисковая система, разработанная для вас, доставляет вам самую актуальную и точную информацию с простым дизайном и системой быстрого функционирования. Вы можете найти почти любую информацию, которую вы ищете на нашем сайте.

На данный момент мы служим только на английском, турецком, русском, украинском, казахском и белорусском языках. Очень скоро в систему будут добавлены новые языки.

Жизнь известных людей дает вам информацию, изображения и видео о сотнях тем, таких как политики, правительственные деятели, врачи, интернет-сайты, растения, технологические транспортные средства, автомобили и т. д.

Источник: https://www.turkaramamotoru.com/ru/%D0%A2%D1%80%D0%B8%D1%82%D0%B8%D0%B9-188203.html

Радиационная опасность трития[ | ]

Тритий имеет период полураспада (12,32 ± 0,02) года[2]. Реакция распада трития имеет следующий вид:

1 3 H → 2 3 H e 1 + + e − + ν ¯ e {\displaystyle {}\mathrm {{}_{1}{3}H} \rightarrow \mathrm {{}_{2}{3}He{1+}} +e{-}+{\bar {u }}_{e}} .

При этом выделяется 18,59 кэВ энергии, из них на электрон (бета-частицу) приходится в среднем 5,7 кэВ, а на электронное антинейтрино — оставшаяся часть. Образовавшиеся бета-частицы распространяются в воздухе всего на 6,0 мм и не могут преодолеть даже верхний слой кожи человека[6].

В силу малой энергии распада трития испускаемые электроны хорошо задерживаются даже простейшими преградами типа одежды или резиновых хирургических перчаток.

Тем не менее, этот изотоп представляет радиационную опасность при вдыхании, поглощении с пищей, впитывании через кожу.

Единичный случай употребления тритиевой воды не приводит к длительному накоплению трития в организме, так как его период полувыведения — от 7 до 14 дней[7][8].

Производство и потребность[ | ]

По данным отчета Institute for Energy and Environmental Research (англ.) 1996 года, в США с 1955 года было произведено около 225 кг трития[9].

В конце XX — начале XXI века наработка ведется на путём облучения TPBAR (англ. tritium-producing burnable absorber rods), планируется также использование АЭС Секвойя.

Переработку и выделение трития проводят на Tritium Extraction Facility, Саванна-Ривер[10].

В СССР и России тритий производился на реакторах АИ, АВ-3, ОК-180, ОК-190, РУСЛАН, Л-2; изотоп выделяется на заводе РТ-1 (ПО «Маяк»)[11][12].

Значительные количества трития (до 2,5—3,5 кг) для гражданских применений производит Канада на 21 тяжеловодном реакторе. Выделение изотопа — компания «Онтарио Хайдро», Дарлингтон[13].

Мировая коммерческая потребность в тритии на 1995 год составляет ежегодно около 400 г, и ещё порядка 2 кг требовалось для поддержания ядерного арсенала США[14] (7 кг для всех мировых военных потребителей). Около 4 кг трития в год образуется на АЭС, но не извлекается[15].

Большие количества трития потребуются для термоядерной энергетики: например, для запуска ITER потребуется как минимум около 3 кг трития, для запуска DEMO понадобится 4—10 кг[16]. Гипотетический тритиевый реактор потреблял бы 56 кг трития на производство 1 ГВт·года электроэнергии, тогда как всемирные запасы трития на 2003 год составляли всего 18 кг[16].

По словам Яна Беранека из организации «Гринпис», в 2010 году производство одного килограмма трития обходилось в 30 млн долларов[17].

Применение[ | ]

Тритиевый брелок, свечение в темноте (снимок с длительной экспозицией).

В 2012 году канадская фирма City Labs представила радиоизотопные генераторы электричества сверхмалой мощности на базе трития, способные питать различные микроэлектронные устройства, таких как RFID-метки, автономных датчиков, медицинские имплантаты. При цене порядка 1000 долларов срок службы генератора составляет около 20 лет[18].

Тритий используется в источниках подсветки в военных и гражданских приборах.

Примечания[ | ]

  1. ↑ 1234Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. — Vol. 729. — P. 337—676. — DOI:10.1016/j.nuclphysa.2003.11.003. — Bibcode: 2003NuPhA.729..337A.
  2. ↑ 123Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — DOI:10.1016/j.nuclphysa.2003.11.001. — Bibcode: 2003NuPhA.729….3A.
  3. ↑ http://energy.gov/sites/prod/files/2013/09/f2/hdbk1079.

    pdf

  4. ↑ Urey H. C., Murphy G. M., Brickwedde F. G. (1933). “A Name and Symbol for h3*”. The Journal of Chemical Physics. 1: 512—513. DOI:10.1063/1.1749325.
  5. ↑ Dan O'Leary (2012). “The deeds to deuterium”. Nature Chemistry. 4: 236. DOI:10.1038/nchem.1273.
  6. ↑ Nuclide safety data sheet: Hydrogen-3. ehso.emory.edu.
  7. ↑ Backgrounder on Tritium, Radiation Protection Limits, and Drinking Water Standards (англ.). U.S.NRC (February 2011). Проверено 5 октября 2012. Архивировано 14 октября 2012 года.
  8. ↑ R. V. Osborne. Review of the Greenpeace report: «Tritium Hazard Report: Pollution and Radiation Risk from Canadian Nuclear Facilities» (англ.) (pdf).

    Canadian Nuclear Association (August 2007). Проверено 5 октября 2012. Архивировано 14 октября 2012 года.

  9. ↑ Hisham Zerriffi. Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy's decision to produce tritium (англ.). Institute for Energy and Environmental Research (англ.) (January 1996).

    Проверено 15 сентября 2010. полный текст

  10. ↑ Михаил Сторожевой. Третируемый тритий. ATOMINFO.RU (28 октября 2010). Проверено 13 ноября 2013.
  11. ↑ Производство плутония и трития для ядерного оружия. Стратегическое ядерное вооружение СССР и России. Проверено 13 ноября 2013.
  12. ↑ Бекман. 6. РЕАКТОРЫ ДЛЯ НАРАБОТКИ ТРИТИЯ.

    Проверено 13 ноября 2013.

  13. ↑ Martin В. Kalinowski, Lars С. Colschen International Control of Tritium to Prevent Horizontal Proliferation and to Foster Nuclear Disarmament // Science & Global Security, 1994, vol. 5, рр. 131—203
  14. ↑ Hisham Zerriffi. Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy’s decision to produce tritium (англ.). Institute for Energy and Environmental Research (1996). Проверено 13 ноября 2013.
  15. ↑ International Control of Tritium for Nuclear Nonproliferation and Disarmament, CRC Press, 2004, page 15
  16. ↑ 12 Tritium Supply Considerations, LANL, 2003. «ITER startup inventory estimated to be ~3 Kg»
  17. ↑ Alasdair Cros. Is fusion power really viable? (англ.) (5 March 2010). Проверено 19 января 2019.

    BBC News — Is fusion power really viable?

  18. ↑ Незаменимые батарейки: Сила трития. Журнал «Популярная Механика» (27 августа 2012). — «Размерами с фалангу пальца, они используют радиоактивный распад для производства электричества – в небольших количествах, зато непрерывно в течение минимум лет двадцати. … цена остается пока на уровне 1000 долларов». Проверено 13 ноября 2013.

Ссылки[ | ]

Источник: https://encyclopaedia.bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%A2%D1%80%D0%B8%D1%82%D0%B8%D0%B9

Поделиться:

Нет комментариев

himya.ru

Изотопы водорода. Дейтерий, протий и тритий.

Водород имеет три изотопа с массовыми числами 1, 2 и 3.

Самый распространенный изотоп водорода – это обычный, привычный нам водород «1H» с ядром, состоящим из одного единственного протона. Нейтронов в этом ядре нет вовсе. По умолчанию, когда говорится «водород», имеют в виду именно такой изотоп, но когда мы говорим о разных изотопах водорода, то термин «водород» будет непонятен – то ли мы имеем в виду именно этот изотоп без нейтронов, то ли любой изотоп водорода. Поэтому для такого изотопа есть свое собственное название: «протий».

Еще один изотоп, который встречается в природе, это «дейтерий» - «2H». Ядро дейтерия состоит из одного протона и одного нейтрона. Содержание дейтерия в природе очень мало – около 0.01% от всех атомов водорода. Дейтерий еще обозначают для краткости буквой «D»

Третий изотоп – «тритий» - «3H». Его для краткости обозначают еще как «T»

В природе водород встречается в виде молекул h3 и HD в соотношении 3200:1.

Если взять разные химические элементы и посмотреть – насколько сильно отличаются физические свойства их изотопов, то мы увидим, что изотопы водорода отличаются друг от друга сильнее всего. Это можно легко объяснить, ведь в ядре водорода лишь один протон, и прибавление нейтрона к одному протону увеличивает массу ядра аж на 100%! То есть масса ядра меняется очень сильно, соответственно и физические свойства тоже сильно меняются.

Предыдущая24252627282930313233343536373839Следующая

Дата добавления: 2014-12-18; просмотров: 10198; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЕЩЕ:

helpiks.org

ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА

Содержание статьи

ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА. Дейтерий (тяжелый водород) – один из двух стабильных изотопов водорода, ядро которого состоит из одного протона и одного нейтрона. Молекула D2 – двухатомна. Содержание в природном водороде – 0,012–0,016%. Температура плавления – 254,5° С, температура кипения – 249,5° С. Тяжелая вода D2O (оксид дейтерия) – изотопная разновидность воды; плотность 1,1, температура плавления – 3,8° С, температура кипения – 101,4° С.

В 1932 одно за другим следовали выдающиеся открытия в области физики: были открыты нейтрон и позитрон, разработана протоно-нейтронная теория строения ядер и релятивистская квантовая механика, построен первый циклотрон и изобретен электронный микроскоп, проведена первая реакция ядерного синтеза, экспериментально измерена скорость движения молекул. Недаром физики назвали этот год anno mirabilis – год чудес. В этом же году был открыт и второй изотоп водорода, названный дейтерием (от греческого deuteros – второй, символ D).

Открытие дейтерия может служить прекрасной иллюстрацией к парадоксальному на первый взгляд высказыванию французского физикохимика Анри Ле Шателье, обращенному к ученикам: «Ошибкой не только начинающих исследователей, но многих немолодых, весьма опытных и зачастую талантливых ученых является то, что они устремляют свое внимание на разрешение очень сложных проблем, для чего еще недостаточно подготовлена почва. Если вы хотите сделать нечто действительно большое в науке, если вы хотите создать нечто фундаментальное, беритесь за детальное обследование самых, казалось бы, до конца обследованных вопросов. Эти-то на первый взгляд простые и не таящие в себе ничего нового объекты и являются тем источником, откуда вы при умении сможете почерпнуть наиболее ценные и порой неожиданные данные».

Действительно, что можно было ожидать от исследования физических свойств обыкновенной чистой воды – они были изучены, как говорится, вдоль и поперек еще в 19 в. Вспомним однако, что проведенные в 1893 рутинные определения плотности газообразного азота, полученного разными методами (литр азота из воздуха весил 1,257 г, а полученного химическим путем – 1,251 г), привели к выдающемуся открытию – сначала аргона, а за ним и других благородных газов.

Можно ли было надеяться обнаружить нечто новое в обычной воде? В начале 19 в. лондонский врач и химик Уильям Праут опубликовал гипотезу, согласно которой из самого легкого элемента – водорода могли возникнуть все остальные элементы путем конденсации. В этом случае атомные массы всех элементов должны быть кратны массе атома водорода. Определения атомных масс, которые оказались дробными, эту гипотезу не подтвердили, и химики 19 в. часто осмеивали ее как лишенную научного содержания (см. ОТНОСИТЕЛЬНАЯ АТОМНАЯ МАССА).

В 1917 немецкий ученый К.Шерингер предположил, что атомы разных элементов построены не только из протия (от греческого protos – первый), т.е. «легкого» водорода с атомной массой 1, а из разных изотопов водорода. К тому времени уже было известно, что один и тот же элемент может иметь изотопы с разной массой. Впечатляющих успехов в открытии большого числа изотопов нерадиоактивных элементов достиг английский физик Фрэнсис Уильям Астон с помощью сконструированного им масс-спектрографа. В этом приборе изучаемые атомы или молекулы бомбардируются пучком электронов и превращаются в положительно заряженные ионы. Пучок этих ионов далее подвергается действию электрического и магнитного поля, и их траектории отклоняются от прямой. Это отклонение тем сильнее, чем больше заряд иона и чем меньше его масса. Из значений отклоняющих напряжений непосредственно получают относительные массы ионов. А из интенсивности пучка ионов с данной массой можно судить об относительном содержании в образце этих ионов.

Гипотеза Шерингера предполагала, что и у самого легкого элемента – водорода тоже могут быть изотопы. Однако попытки обнаружить «второй», тяжелый водород, предпринятые в 1919 Отто Штерном и Максом Фольмером, оказались безуспешными. Не удалось обнаружить его и Астону. Это означало одно из двух: либо у водорода тяжелого изотопа вовсе нет, либо его содержание в природном водороде слишком мало и чувствительности имевшегося в распоряжении Астона прибора недостаточно для его обнаружения. Правильным оказалось второе предположение, однако тяжелый водород прятался от исследователей в течение еще многих лет, маскируясь под ошибки эксперимента.

В 1927 Астон очень точно для того времени измерил отношение масс атомов водорода и кислорода-16; у него получилось 1,00778:16,0000, что, казалось, находится в прекрасном соответствии с результатами самых точных измерений атомной массы водорода химическим путем: у химиков это отношение получалось равным 1,00777:16,0000. Однако такое единодушие физиков и химиков было недолгим: оказалось, что природный кислород, с которым работали химики, – плохой эталон для измерения атомных масс, поскольку кислород представляет собой смесь изотопов, причем их относительное содержание в разных источниках не вполне постоянно. Точные измерения в начале 30-х соотношения 18O:16O = 1:630 существенным образом изменили все прежние расчеты и данные об атомных массах. Пришлось в срочном порядке отказываться от «химической» шкалы атомных масс и переходить на «физическую» шкалу, основанную на кислороде-16. Такой пересчет данных химических анализов дал отношение масс Н:16О = 1,00799:16,0000, что уже заметно отличалось от измерений Астона. Кто же ошибся – физики или химики, выполнившие определения атомных масс? И те и другие ручались за точность своих определений, расхождение в результатах далеко выходило за пределы экспериментальных ошибок.

В 1931 было высказано предположение о том, что причина небольшого расхождения – наличие в обычном водороде более тяжелого изотопа. Расчеты показали, что расхождение устраняется в том случае, если на 5000 атомов обычного водорода 1H приходится всего один атом его вдвое более тяжелой разновидности 2Н. Дело оставалось за малым – обнаружить этот изотоп экспериментально. Но как это сделать, если его действительно так мало? С учетом чувствительности имевшейся в то время аппаратуры выход был один: сконцентрировать тяжелый водород, увеличив тем самым его содержание в обычном водороде, – примерно так же, как концентрируют спирт, перегоняя его смесь с водой. Если перегонять смесь обычного и тяжелого водорода, остаток должен обогащаться более тяжелым изотопом. После этого можно было снова попытаться обнаружить тяжелый изотоп водорода аналитически.

В конце 1931 группа американских физиков – Гарольд Юри со своими учениками, Фердинандом Брикведде и Джорджем Мерфи, взяли 4 л жидкого водорода и подвергли его фракционной перегонке, получив в остатке всего 1 мл, т.е. уменьшив объем в 4 тысячи раз. Этот последний миллилитр жидкости после ее испарения и был исследован спектроскопическим методом. Талантливый спектроскопист Гарольд Клейтон Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету предполагаемого атома 2H. Соотношение интенсивностей линий нового изотопа (Юри назвал его дейтерием) и обычного водорода показало, что в исследованном обогащенном образце нового изотопа в 800 раз меньше, чем обычного водорода. Значит, в исходном водороде тяжелого изотопа еще меньше. Но насколько?

Пытаясь оценить так называемый коэффициент обогащения при испарении жидкого водорода, исследователи поняли, что в своих опытах использовали самый неподходящий источник водорода. Дело в том, что он был получен, как обычно, путем электролиза воды. А ведь при электролизе легкий водород должен выделяться быстрее, чем тяжелый. Получается, что образец был сначала обеднен тяжелым водородом, а затем снова обогащался им!

После того, как дейтерий был обнаружен спектроскопически, Эдвард Уошберн предложил разделять изотопы водорода электролизом. Эксперименты показали, что при электролизе воды легкий водород действительно выделяется быстрее, чем тяжелый. Именно это открытие стало ключевым для получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932, а уже в июле были опубликованы результаты по электролитическому разделению изотопов. В 1934 за открытие тяжелого водорода Юри была присуждена Нобелевская премия по химии. (Уошберн тоже был представлен к премии, но скончался в том же году, а по положению о Нобелевских премиях они вручаются только прижизненно.)

Когда был открыт нейтрон, стало ясно, что в ядре дейтерия, в отличие от протия, помимо протона находится также нейтрон. Поэтому ядро дейтерия – дейтрон вдвое тяжелее протона; его масса в углеродных единицах равна 2,0141018. В среднем в природном водороде содержится 0,0156% дейтерия. В прибрежной морской воде его немного больше, в поверхностных водах суши – меньше, в природном газе – еще меньше (0,011–0,013%). По химическим свойствам дейтерий схож с протием, но огромное различие в их массах приводит к заметному замедлению реакций с участием атомов дейтерия. Так, реакция дейтерированного углеводорода R–D с хлором или кислородом замедляется, в зависимости от температуры, в 5–10 раз по сравнению с реакцией R–Н. С помощью дейтерия можно «пометить» водородсодержащие молекулы и изучить механизмы их реакций. Так, в частности, были изучены реакции синтеза аммиака, окисления углеводородов, ряд других важных процессов.

Тяжелая вода.

После фундаментальных работ Уошберна и Юри исследования нового изотопа стали развиваться быстрыми темпами. Уже вскоре после открытия дейтерия в природной воде была обнаружена ее тяжелая разновидность. Обычная вода состоит в основном из молекул 1Н2О. Но если в природном водороде есть примесь дейтерия, то и в обычной воде должны быть примеси НDO и D2O. И если при электролизе воды Н2 выделяется с большей скоростью, чем НD и D2, то со временем в электролизере должна накапливаться тяжелая вода. В 1933 Гилберт Льюис и американский физикохимик Роналд Макдональд сообщили, что в результате длительного электролиза обычной воды им удалось получить не виданную никем до этого новую разновидность воды – тяжелую воду.

Открытие и выделение весовых количеств новой разновидности воды – D2O произвело большое впечатление на современников. Всего за два года после открытия было опубликовано более сотни работ, посвященных исключительно тяжелой воде. О ней читались популярные лекции, печатались статьи в массовых изданиях. Практически сразу же после открытия тяжелую воду стали использовать в химических и биологических исследованиях. Так, было обнаружено, что рыбы, микробы и черви не могут существовать в ней, а животные погибают от жажды, если их поить тяжелой водой. Не прорастают в тяжелой воде и семена растений.

Однако технически получение значительных количеств D2О представляло собой трудную задачу. Для обогащения воды дейтерием на 99% необходимо уменьшить объем воды при электролизе в 100 тысяч раз. Льюис и Макдональд взяли для своих опытов 10 л воды из проработавшей несколько лет большой электролитической ванны, в которой содержание дейтерия было повышенным. Пропуская через эту воду ток большой силы – 250 ампер (для увеличения электропроводности вода содержала щелочь), они за неделю уменьшили ее объем в 10 раз. Чтобы жидкость при электролизе таким огромным током не закипела, ее приходилось непрерывно охлаждать холодной водой, пропускаемой по металлическим трубкам внутри электролизера. Остаток объемом 1 л перенесли в электролизер поменьше и снова путем электролиза снизили объем в 10 раз. Затем в третьей ячейке объем был уменьшен до 10 мл, и, наконец, в четвертой он был доведен до 0,5 мл. Отогнав этот остаток в вакууме в небольшую колбочку, они получили воду, содержащую 31,5% D2O. Ее плотность (1,035) уже заметно отличалась от плотности обычной воды.

В следующей серии опытов из 20 л воды, также в несколько этапов, получили 0,5 мл воды с плотностью 1,075, содержащей уже 65,7% D2O. Продолжая такие опыты, удалось, наконец, получить 0,3 мл воды, плотность которой (1,1059 при 25°С) уже больше не увеличивалась при уменьшении объема при электролизе до 0,12 мл. Эти несколько капель и были первые за всю историю Земли капли почти чистой тяжелой воды. Соответствующие расчеты показали, что прежние оценки соотношения обычного и тяжелого водорода в природе были слишком оптимистическими: оказалось, что в обычной воде содержится всего 0,017% (по массе) дейтерия, что дает соотношение D:Н = 1:6800.

Чтобы получать заметные количества тяжелой воды, необходимой ученым для исследований, необходимо было подвергать электролизу уже огромные по тем временам объемы обычной воды. Так, в 1933 группе американских исследователей для получения всего 83 мл D2O 99%-ой чистоты пришлось взять уже 2,3 тонны воды, которую разлагали в 7 стадий. Было ясно, что такими методами ученые не смогут обеспечить всех желающих тяжелой водой. А тут выяснилось, что тяжелая вода является прекрасным замедлителем нейтронов и потому может быть использована в ядерных исследованиях, в том числе для построения ядерных реакторов. Спрос на тяжелую воду вырос настолько, что стала ясна необходимость налаживания ее промышленного производства. Трудность состояла в том, что для получения 1 тонны D2O необходимо переработать около 40 тысяч тонн воды, израсходовав при этом 60 млн кВт-ч электроэнергии – столько уходит на выплавку 3000 т алюминия!

Первые полупромышленные установки были маломощными. В 1935 на установке в Беркли еженедельно получали 4 г почти чистой D2O, стоимость которой составляла 80 долларов за грамм – это очень дорого, если учесть, что за прошедшие годы доллар «подешевел» в десятки раз. Более эффективной была установка в химической лаборатории Принстонского университета – она давала ежедневно 3 г D2O ценой по 5 долларов за грамм (через 40 лет стоимость тяжелой воды снизилась до 14 центов за грамм). Наиболее трудоемким оказался самый первый этап электролиза, в котором концентрация тяжелой воды повышалась до 5–10%, поскольку именно на этом этапе приходилось перерабатывать огромные объемы обычной воды. Дальнейшее концентрирование можно было уже без особых проблем провести в лабораторных условиях. Поэтому преимущества получали те промышленные установки, которые могли подвергать электролизу большие объемы воды.

Теоретически можно вместо электролиза использовать простую перегонку, поскольку обычная вода испаряется легче, чем тяжелая (ее температура кипения 101,4°С). Однако этот способ еще более трудоемкий. Если при электролизе коэффициент разделения изотопов водорода (т.е. степень обогащения в одной стадии) теоретически может достигать 10, то при перегонке он составляет всего 1,03–1,05. Это означает, что разделение путем перегонки исключительно малоэффективно. Академик Игорь Васильевич Петрянов-Соколов как-то подсчитал, сколько воды должно испариться из чайника, чтобы в остатке заметно повысилось содержание дейтерия. Оказалось, что для получения 1 литра воды, в которой концентрация D2О всего в 10 раз превышает природную, в чайник надо долить в общей сложности 2,1O30 тонн воды, что в 300 млн. раз превышает массу Земли!

Масса молекулы D2O на 11% превышает массу Н2О. Такая разница приводит к существенным различиям в физических, химических и, что особенно важно, биологических свойствах тяжелой воды. Тяжелая вода кипит при 101,44°С, замерзает при 3,82°С, имеет плотность при 20°С 1,10539 г/см3, причем максимум плотности приходится не на 4°С, как у обычной воды, а на 11,2°С (1,10602 г/см3). Кристаллы D2O имеют такую же структуру, как и обычный лед, но они более тяжелые (0,982 г/см3 при 0°С по сравнению с 0,917 г/см3 для обычного льда). В смесях с обычной водой с большой скоростью происходит изотопный обмен: Н2О + D2O2HDO. Поэтому в разбавленных растворах атомы дейтерия присутствуют в основном в виде HDO. В среде тяжелой воды значительно замедляются биохимические реакции, и эта вода не поддерживает жизни животных и растений.

В настоящее время разработан ряд эффективных методов получения тяжелой воды: электролизом, изотопным обменом, сжиганием обогащенного дейтерием водорода. В настоящее время тяжелую воду получают ежегодно тысячами тонн. Ее используют в качестве замедлителя нейтронов и теплоносителя в ядерных реакторах (для заполнения одного современного крупного ядерного реактора требуется 100–200 тонн тяжелой воды чистотой не менее 99,8%); для получения дейтронов D+ в ускорителях частиц; как растворитель в спектроскопии протонного магнитного резонанса (обычная вода своими протонами смазывает картину). Не исключено, что роль тяжелой воды значительно возрастет, если будет осуществлен промышленный термоядерный синтез.

«Битва за воду».

Для промышленного получения тяжелой воды очень важно наличие дешевой электроэнергии. Уже в довоенные годы стало понятно, что идеальные условия для этого имеются в Норвегии, где давно работали мощные электролизные установки для получения водорода. Завод по производству тяжелой воды вошел в строй в 1934; к 1938 он производил 40 кг D2О в год, а в 1939 – второе больше. В то время уже стало очевидным огромное стратегическое значение тяжелой воды для разработки ядерного оружия. Поэтому не удивительно, что немцы, оккупировавшие Норвегию в мае 1940, приняли самые энергичные меры по засекречиванию завода тяжелой воды и его охране. К концу 1941 Германия вывезла из Норвегии 361 кг чистой D2O, а через год – уже 800 кг.

Союзники отдавали себе отчет в смертельной для себя опасности норвежского производства и потому решили во что бы то ни стало уничтожить завод. Главный инженер завода Йомар Брун с риском для жизни достал исключительно ценную информацию – чертежи и фотографии завода. Все материалы были пересняты на микропленку и в тюбике для зубной пасты переправлены через Швецию в Англию. Немцы ожидали нападения с воздуха на завод и усиленно укрепляли особо важные цеха. Поэтому было решено послать в Норвегию специально подготовленную команду подрывников. Диверсионной группе удалось взорвать электролизные баки в цехе концентрирования тяжелой воды. На восстановление оборудования ушло полгода – срок огромный в условиях войны. Немцы решили подстраховаться, и в мае 1943 их делегация, состоящая из ученых и промышленников, выехала в Италию, чтобы наладить там производство тяжелой воды на электролизном заводе в поселке Маренго на севере страны. Но было уже поздно: 3 сентября король Виктор-Эммануил III подписал на Сицилии акт о капитуляции Италии, а 9 сентября около Неаполя на территорию Италии вступили англо-американские войска. Так что норвежский завод оставался для немцев единственным источником тяжелой воды. Однако и он уже был обречен: 16 ноября на завод был произведен массированный воздушный налет. В течение 33 минут 140 тяжелых бомбардировщиков «Летающая крепость» сбросили на завод 800 бомб! В результате была выведена из строя гидроэлектростанция, однако установки для производства тяжелой воды, защищенные толстым слоем бетона, практически не пострадали. Не обошлось и без жертв среди мирного норвежского населения – погибло 22 человека.

Немцы понимали, что и после бомбежки союзники не оставят завод в покое, и потому приняли решение вывезти в Германию все имеющиеся запасы тяжелой воды – а было ее ни много ни мало 15 тонн! Разведка союзников сработала четко и своевременно: в результате тщательно продуманной и с блеском проведенной операции 20 февраля 1944 был взорван паром, на котором находились железнодорожные цистерны с тяжелой водой. Паром, переправлявшийся в этот момент через озеро Тинсьё, пошел на дно, и поднять его было практически невозможно, так как озеро было очень глубоким – около 400 м. И в этом эпизоде битвы за тяжелую воду не обошлось без трагедии: за уничтожение практически всего запаса тяжелой воды заплатили жизнью 14 норвежцев, находившихся на пароме. Но немцы лишились всякой возможности запустить ядерный реактор и получить атомную бомбу.

Илья Леенсон

www.krugosvet.ru


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.