Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Цитотоксичность что это такое


Что такое цитотоксичность?

Главная / Новости / Что такое цитотоксичность?

27 июля 2016

Цитотоксичность – это термин, используемый в отношении субстанций для описания того, насколько токсичными или ядовитыми они могут быть для клеток. Воздействие цитотоксичных субстанций может приводить к необратимым повреждениям или даже смерти клеток. Поэтому вещества или ингредиенты, которые должны стать частью какого-либо лекарственного препарата или медицинского устройства, обычно проверяют на уровень цитотоксичности посредством лабораторных тестов и анализов. Что касается этимологии термина «цитотоксичность», он является сочетанием двух греческих слов: «kytos», которое означает «клетка», и «toxikon», означающего «яд».

В число субстанций, которые могут быть цитотоксичными, входят не только химические вещества, но даже определенные типы клеток. Если говорить о химических веществах, некоторые из тех, что имеют природное происхождение, представляют собой яды животных, таких как пауки и змеи.

Например, известно, что гадюки высвобождают вид цитотоксинов под названием гемотоксины, которые могут разрывать красные клетки крови и вызывать внутренние кровотечения и повреждение органов. Еще один опасный вид цитотоксинов, кардиотоксины, часто ассоциируют с укусом ядовитой королевской кобры. Эти токсины прикрепляются к мышечным клеткам сердца, не позволяя этому органу перекачивать кровь, что может приводить к смерти.

Что касается синтетически производимых химических веществ, их цитотоксичность не всегда несет в себе вред и может использоваться в терапевтических целях, как, например, в случае химиотерапии – распространенного метода лечения больных раком. Одним из отличительных свойств раковых, или злокачественных клеток является то, что они необычайно быстро размножаются. Химиотерапия позволяет предотвращать размножение этих клеток, в конечном итоге уничтожая их.

Преимущество этого метода лечения заключается в том, что многие важные типы клеток в организме – такие как клетки сердца, головного мозга и костей – остаются непораженными, так как их регенерация происходит медленнее, чем у злокачественных клеток. Тем не менее, другие клетки, для которых быстрая регенерация является нормой, могут оказываться поврежденными химиотерапией. В число таких клеток входят клетки кишечника, волос и полости рта. Вот почему больные раком, которые проходят лечение препаратами химиотерапии, могут сталкиваться с диареей, потерей волос и образованием язв в полости рта, помимо других побочных эффектов цитотоксичности этих лекарственных средств.

Человеческий организм также вырабатывает цитотоксичные клетки, которые помогают бороться с болезнетворными вирусами и инородными телами. Примером таких клеток являются «цитотоксичные Т-клетки», разновидность белых клеток крови. Они обладают способностью уничтожать клетки, которые повреждены вирусом или опухолью. Еще одной цитотоксичной разновидностью белых клеток крови являются «естественные клетки убийцы», высвобождающие определенные белки и каким-то образом «программирующие» инфицированные клетки на смерть.

Источник: wisegeek.com

Далее по теме:

Понятие цитотоксичности

План лекции.

Отравляющие и высокотоксичные вещества цитотоксического действия. Ингибиторы синтеза белка и клеточного деления, образующие аддукты ДНК и РНК.

Лекция 11

1. Понятие цитотоксичности.

2. Классификация цитотоксикантов.

3. Ингибиторы синтеза белка и клеточного деления.

4. Ингибиторы синтеза белка и клеточного деления, образующие аддукты ДНК и РНК.

5. Иприты.

Цитотоксическим называется повреждающее действие веществ на организм путем формирования глубоких структурных и функциональных изменений в клетках, приводящих к их гибели.В основе такого действия лежит прямое или опосредованное иными механизмами поражение внутриклеточных структур, сопровождающееся грубыми нарушениями генетического ап­парата клеток и клеточных мембран, процессов синтеза белка и других видов пластического обмена.

Следует отметить, что практически любая тяжелая интоксикация в той или иной степени сопряжена с повреждением клеток различных ти­пов. Однако часто повреждение носит вторичный характер (в результате стойкого нарушения токсикантами или продуктами их метаболизма ге­модинамики, газообмена, кислотно-основного состояния, ионного со­става внутренней среды организма и т.д.) либо проявляется при воздей­ствии химических соединений на клетку лишь в очень высоких дозах (на фоне уже развившихся иных признаков поражения). Вместе с тем сущест­вуют вещества, цитотоксическое действие которых обусловлено прямой ата­кой ксенобиотика на структурные элементы клетки и является основным в профиле вызываемого ими токсического процесса. Такие вещества можно отнести к группе цитотоксикантов.К числу наиболее токсичных предста­вителей цитотоксикантов относятся:

1. Металлы:

• мышьяк;

• ртуть и др.

2. Элементорганические соединения:

• сероорганические соединения (галогенированные тиоэфиры: сернистый иприт);

• азоторганические соединения (галогенированные алифатиче­ские амины и некоторые аминосоединения жирного ряда: азо­тистый иприт, этиленимин);

• мышьякорганические соединения (галогенированные алифати­ческие арсины: люизит);

• органические окиси и перекиси (этиленоксид) и др.

3. Галогенированные полициклические ароматические углеводороды:

• галогенированные диоксины;

• галогенированные бензофураны;

• галогенированные бифенилы и др.

4. Сложные гетероциклические соединения:

• афлатоксины;

• трихотеценовые микотоксины;

• аманитин и др.

5. Белковые токсины:

• рицин и др.

Для военной токсикологии особый интерес представляют вещества, способные при экстремальных ситуациях вызывать массовые санитарные потери. К числу таковых из группы цитотоксикантов относятся прежде всего боевые отравляющие вещества кожно-нарывного действия (иприт, азотистый иприт, люизит), некоторые промышленные агенты (соединения мышьяка, ртути и т. д.), фитотоксиканты и пестициды, и их токсичные примеси (диоксин и диоксиноподобные соединения), а также некоторые другие соединения.

Общим в действии ОВТВ этой группы на организм являются:

• медленное, постепенное развития острой интоксикаций (продолжительный скрытый период, постепенное развитие токсического процесса);

• изменения со стороны всех органов и тканей (как на месте аппликации, так и после резорбции), с которыми токсикант или продукты его метаболизма в силу особенностей токсикокинети-ки способны непосредственно взаимодействовать;

• основные формы нарушений со стороны органов и систем, вовлеченных в токсический процесс: воспалительно-некротические изменения, угнетение процессов клеточного деления, глубокие функциональные расстройства внутренних органов.

Вместе с тем поражения различными токсикантами имеют и свою специфику, обусловленную особенностями основного механизма их токсического действия.

Классификация цитотоксикантов.

1. Ингибиторы синтеза белка и клеточного деления.

1.1. Образующие аддукты нуклеиновых кислот:

■ сернистый иприт, азотистый иприт.

1.2. Не образующие аддукты нуклеиновых кислот:

■ рицин.

2. Тиоловые яды:

■ мышьяк, люизит.

3. Токсичные модификаторы пластического обмена:

■ галогенированные диоксины, бифенилы.

Вещества цитотоксического действия

Размещено на http://www.allbest.ru/

Введение

Цитотоксическим – называется повреждающее действие веществ на организм путем формирования глубоких структурных и функциональных изменений в клетках, приводящих к их гибели. В основе такого действия лежит прямое или опосредованное иными механизмами поражение внутриклеточных структур, сопровождающееся грубыми нарушениями генетического аппарата клеток и клеточных мембран, процессов синтеза белка и других видов пластического обмена.

Цитотоксиканты - вещества, токсическое действие которых обусловлено первичным повреждением структурных элементов клетки (мембран, генома, аппарата синтеза белка, пластического обмена), что является основным в вызываемом ими токсическом процессе. Уже первые признаки даже самых легких клинических форм отравления ими сопровождаются повреждением клеток.

Группа отравляющих токсических веществ цитотоксического действия включает целый ряд различных по химическому строению веществ. Особый интерес представляют токсичные химические вещества, способные при экстремальных ситуациях вызывать массовые санитарные потери: боевые отравляющие вещества кожно-нарывного действия (сернистый и азотистый иприт, люизит), некоторые промышленные агенты (соединения мышьяка, ртути, эпоксиды, метилбромид, метилхлорид, диметилсульфат и др.), фитотоксиканты и пестициды, а также их токсичные примеси (диоксин и диоксиноподобные соединения), а также некоторые другие соединения. Отравляющие и высокотоксичные вещества цитотоксического действия объединяет способность вызывать воспалительно-некротические изменения тканей на путях проникновения в организм.

Классификация цитотоксикантов:

  1. Мышьяк, некоторые металлы и их производные;

  2. Элементорганические соединения:

--- сероорганические соединения (галогенированные тиоэфиры – сернистый иприт),

--- азоторганические соединения (галогенированные алифатические амины и некоторые аминосоединения жирного ряда: азотистый иприт, этиленимин)

--- мышьякорганические соединения (галогенированные алифатические арсины: люизит),

--- органические окиси и перекиси (этиленоксид) и др.

  1. Галогенированные полициклические ароматические углеводороды:

--- галогенированные диоксины,

--- галогенированные бензофураны,

--- бифенилы и др.

  1. Сложные гетероциклические соединения:

--- афлатоксины,

--- трихотеценовые микотоксины,

--- аманитин и др.

В основе механизма токсического действия цитотоксикантов лежит ингибирование синтеза белка и клеточного деления с образованием аддуктов нуклеиновых кислот (иприты); ингибирование синтеза белка и клеточного деления без образования аддуктов нуклеиновых кислот (рицин), взаимодействие с SH-группами белков (люизит, мышьяк и другие тиоловые яды), а также токсическая модификация пластического обмена (галогенированные диоксины, бифенилы и др.).

Поэтому в соответствии с особенностями механизма действия цитотоксиканты подразделяются на основные группы:

  1. Ингибиторы синтеза белка и клеточного деления.

    1. Образующие аддукты нуклеиновых кислот (иприты). Аддукты – комплексы молекулы цитотоксиканта с пуриновыми (пиримидиновыми) основаниями нуклеиновых кислот молекулы ДНК.

    2. Не образующие аддукты нуклеиновых кислот (рицин),

  2. Тиоловые яды ( мышьяк и его органические и неорганические соединения; ртуть и ее соединения(этилмеркурхлорид); а также кадмий, медь, железо, кобальт, цинк, марганец, молибден, ванадий, никель и их неорганические и органические дериваты.

  3. Токсичные модификаторы пластического обмена (галогенированные диоксины, бифенилы и др. ).

Вещества цитотоксического действия могут быть классифицированы также следующим образом:

  1. Боевые отравляющие вещества (иприт, люизит);

  2. Промышленные и народнохозяйственные агенты (хлористый метил, хлористый метилен, бромистый метил, йодистый метил, диоксин, металлы);

  3. Природные яды (рицин, афлатоксины и др.).

Некоторые вещества цитотоксического действия могут быть использованы в качестве лекарственных препаратов, их классифицируют следующим образом:

  1. Противоопухолевае препараты;

  2. Антибиотики;

  3. Биологически активные природные соединения – фитонциды.

Общим в действии токсикантов этой группы на организм является:

  1. Медленное, постепенное развитие интоксикации (продолжительный скрытый период, постепенное развитие токсического процесса);

  2. Универсальность повреждающего действия, когда практически в токсический процесс вовлечены все органы и системы;

  3. Основные формы вызываемых в органах и тканях нарушений – воспалительно-некротические изменения, угнетение процессов клеточного деления, угнетение процессов клеточного деления, глубокие функциональные расстройства внутренних органов.

1. Ингибиторы синтеза белка и клеточного деления

1.1 Образующие аддукты нуклеиновых кислот

иприт рицин мышьяк цитотоксический

Аддукты нуклеиновых кислот, соединяются с азотистыми основаниями нуклеиновых кислот ковалентно, они преимущественно поражают делящиеся клетки. Наибольшей чувствительностью к цитотоксикантам, образующим аддукты нуклеиновых кислот, обладают органы и системы с большим потенциалом к клеточному делению.

Иприты

Перегнанный (сернистый) иприт – дихлордиэтилсульфид.

Бесцветная маслянистая жидкость без запаха. При разложении продукта и при наличии технических примесей появляется горчичный запах (горчичный яд). Основное боевое состояние сернистого иприта – пары или капли.

Летучесть незначительная, но уже через 3 минуты после вдыхания паров иприта в условиях максимального насыщения в организм проникает смертельная токсодоза. Пары иприта тяжелее воздуха в 5,5 раза. Жидкий иприт в воде растворяется плохо и опускается на дно водоемов, на воде остается пленка. Хорошая растворимость в жирах определяет высокие дерматотропные свойства. В смеси с дихлорэтаном, зарином, зоманом может применяться в зимнее время, т. к. такие смеси замерзают при температуре – ниже минус 20 градусов С. Для дегазации может использоваться – дихлорамин.

Обладает кожнонарывным действием, т. к. взаимодействует со структурными белками клеточных мембран. Иприт обладает кумулятивными свойствами, контакт с этим ядом вызывает сенсибилизацию к нему.

Азотистый иприт – этил-(дихлордиэтил)-амин.

Азотистый иприт – маслянистая слегка темная или бесцветная жидкость, легко растворяется в органических растворителях, практически не растворима в воде.

Сернистый, азотистый, кислородный иприты - обладают высокой температурой кипения, давление насыщенных паров ипритов – незначительное, возрастает с увеличением температуры. В обычных условиях иприты испаряются медленно, создавая при заражении местности стойкий очаг поражения. Кроме того, иприты обладают высокой стойкостью к разрушающему действию факторов внешней среды. Сернистый иприт сохраняется 18 часов, азотистый иприт – 12 часов.

Они способны надолго заражать различные объекты и могут представлять опасность при авариях на объектах по уничтожению химического оружия, при производстве морских инженерных работ в акваториях, где производилось затопление отравляющих веществ, а также при террористических актах. При боевом применении ипритов формируется стойкий очаг поражения.

Связь алкильных радикалов в молекулах токсикантов может быть разрушена путем гидролиза. Конечными продуктами гидролиза являются нетоксичные соединения, поэтому реакция может быть использована для дегазации зараженных объектов. Гидролизу подвергается только растворившееся количество ипритов. А т. к. растворимость ипритов очень низкая, находящиеся в воде ОВ долго сохраняют свою токсичность. Процесс гидролиза можно ускорить в условиях очень большого избытка воды и нагревания зараженной жидкости с добавлением разбавленных щелочей.

Иприты способны проникать в организм любым путем: ингаляционно (в виде паров и аэрозолей), через неповрежденную кожу, раневую и ожоговую поверхности (в капельно-жидкой форме), и через рот с зараженной водой и продуктами. Контакт с веществами не сопровождается неприятными ощущениями (немой контакт). В организме вещества подвергаются дегалогенированию. При этом возможно образование промежуточных продуктов (сульфоний-катиона и иммоний-катиона) с действием которых на молекулы мишени связывают механизм токсического действия ипритов. Сернистый иприт подвергается окислению с образованием моно- и ди-сульфоксидов. Только глубокое окисление ведет к потере токсических свойств и полному разрушению молекулы до кислоты серной, хлористого водорода, углекислого газа и воды. При хлорировании ипритов в водной и безводной среде их молекулы разрушаются, что приводит к потере токсических свойств.

Патогенез:

После поступления в кровь иприты быстро распределяются в организме. Метаболизм идет очень быстро. Поражение ипритами складывается из местного и резорбтивного действия. Местное действие проявляется в виде эриматозного, эриматозно-буллезного, язвенно-некротического дерматита.

Резорбтивное действие характеризуется угнетением кроветворения, ЦНС, нарушением кровообращения, пищеварения, всех видов обмена веществ, терморегуляции. Подавляется иммунная система, поэтому отмечается наклонность к присоединению вторичной инфекции.

Анализ клинических особенностей поражений ипритами позволяет произвести сопоставление с ионизирующими излучениями. Их сходство проявляется в действии на кровь, на регенеративную способность тканей, в развитии кахексии и депрессии, угнетении имуннореактивных систем. Поэтому иприты нередко называют лучевыми ядами. Под влиянием ипритов происходит остановка процессов клеточной дифференцировки, что именуется цитостатическим действием. Большие дозы ОВ повреждают хромосомный аппарат ядра клетки, что лежит в основе мутагенеза. Увеличение дозы и времени контакта иприта с клетками вызывает распад ядра и разрушение структуры клетки, что называется цитотоксическим действием. Цитотоксическое действие ипритов объясняется алкилированием пуриновых оснований нуклеотидов, образованием ковалентных связей с белками, ингибированием ряда ферментов, активацией перекисных процессов и угнетением антиоксидантной системы, угнетением обмена цитокинов.

К повреждению клеток при действии ипритов приводят: алкилирование нуклеиновых кислот, повреждение смежных участков комплементарных нитей ДНК, препятствующее нормальной репарации, угнетение процесса энергообразования в клетке, нарушения внутриклеточного обмена кальция и последующая активация фосфолипаз и гидролаз.

Последовательно происходящие на молекулярно-мембранном уровне цистостатические, мутагенные и цитотоксические изменения получили название алкилирующего действия ипритов.

Алкилирование – биохимическая реакция вытеснения атомов водорода из аминных и сульфгидрильных групп, из аминных и нуклеиновых кислот. Молекула иприта вытесняет функциональную группу нукдеотида. Одновременно с повреждением синтеза нуклеиновых кислот происходит нарушение полимеризации аминокислот, усиливается распад полипептидов, нарушается функциональная активность ферментных систем. Они ингибируют синтез белка и клеточного деления с образованием аддуктов нуклеиновых кислот. Ведущим механизмом при интоксикации ипритами является повреждение структуры полинуклеотидов и нарушение энергетического обеспечения функций организма. Яды этой группы повреждают пуриновые основания ДНК и РНК, что приводит к нарушению последовательности нуклеотидов в них, разрушению полинуклеотидных цепей, образованию сшивок, что, в свою очередь, ведет к угнетению кроветворения, нарушению иммуногенеза, иммунодепрессии, угнетению репаративных процессов, появлению генетических дефектов. Иприты обладают способностью избирательно блокировать альфа- адренорецепторы сосудов, что ведет к патологическому депонированию крови, уменьшению кровотока в большом круге кровообращения, падению АД, развитию коллапса. В организме формируется цепь тяжелых рефлекторных расстройств. С места повреждения исходит афферентная импульсация, воспринимаемая как чувство боли и нестерпимого зуда, приводящая к нарушению функций внутренних органов. Развиваются гипоксия, гипотония и другие изменения, характерные для ипритного шока. Развитие гипотонии углубляется специфическим действием иприта на альфа- адренорецепторы. Иприты обладают кожно-нарывным действием, взаимодействуя со структурными белками клеточных мембран, происходит извращение структуры мембранных белков, что ведет к нарушению клеточной проницаемости и пузыреобразованию вследствие выпотевания цитоплазмы под верхний слой кожи.

Таким образом, в формировании ипритных поражений принимают участие такие механизмы, как местное алкилирующее действие ипритов (воспалительно-некротическое действие), общее алкилирующее действие (радиомиметический синдром), рефлекторное и адреноблокирующее действие.

Подводя итог, можно так сформулировать механизм токсического действия ипритов:

  1. Алкилирование пуриновых оснований нуклеотидов;

  2. Образование ковалентных связей с белками;

  3. Ингибирование ряда ферментов;

  4. Активация перекисных процессов, угнетение антиоксидантных систем;

  5. Угнетение обмена веществ;

Клиника:

Иприты относятся к веществам кожно-нарывного действия. Токсичные агенты, вызывающие воспалительно-некротические изменения на путях проникновения в организм в сочетании с резорбтивным действием, называются кожно-нарывными ОВ.

Иприт проникает через все. Проявления поражения ипритами в зависимости от пути поступления в организм характеризуются поражением кожных покровов, глаз, органов дыхания и желудочно-кишечного тракта. Поэтому различают кожную, глазную, легочную, желудочно-кишечную формы поражения. Поражение кожи протекает в форме эритематозного, эритематозно-буллезного, язвенно-некротического дерматита.

Дерматотоксичность – это свойство химических веществ, действуя на организм немеханическим путем , вызывать повреждение кожных покровов.

Воздействие осуществляется двумя способами:

  1. Прямым контактом кожных покровов с парообразными, жидкими, твердыми веществами (фенолы, формальдегид, амины, кислоты, щелочи, металлы);

  2. Путем резорбтивного действия с развитием системных эффектов.

Поражение кожи: Для поражения кожи парообразным ипритом характерно: диффузность поражения, преимущественное поражение участков, богатых потовыми и сальными железами. Наиболее чувствительны к действию ипритов – паховая область, подмышечные впадины, далее в порядке убывания чувствительности: лицо, ладони, стопы. Поражение кожи при попадании капель жидкого иприта характеризуется: глубоким повреждением, вялостью репаративных процессов, присоединением вторичной инфекции, образованием рубцов в периоде последствий.

Степень поражения кожных покровов при действии ипритов зависит от : агрегатного состояния токсиканта, продолжительности контакта с веществом, температуры и влажности воздуха, анатомической области поверхности кожи.

При накожной аппликации иприт проступает в организм через: потовые железы, сальные железы, волосяные фолликулы, клеточные и соединительно-тканные элементы кожи.

Различают периоды: скрытый (продолжается от 5 до 15 часов), эриматозный, поверхностный буллезный (появление пузырьков с белым содержимым вокруг эритемы – симптом ипритного или жемчужного ожерелья) глубокий буллезный (слияние мелких пузырьков крупные), язвенно-некротический и рубцевание. По площади заражения кожи поражение протекает в форме– локального или распространенного (диффузного), по глубине поражения кожи – поверхностного или глубокого. Хотя вещества хорошо всасываются через кожные покровы и вызывает их глубокие поражения, вероятность летальных исходов при данном способе воздействия – наименьшая.

Поражение глаз: возможно в виде катарального коньюктивита, гнойного коньюктивита:

Поражение органов дыхания: проявляется в форме назофарингита, ларингита, трахеобронхита, очаговой пневмонии. Для ингаляционных (легочных) поражений ипритом резорбтивные явления более характерны. Ингаляционное отравление является наиболее опасным. Именно при этом способе воздействия весьма вероятны тяжелые и крайне тяжелые формы поражения со смертельным исходом.

При попадании ипритов внутрь: развивается язвенный стоматит, острый гастрит и гастроэнтерит. Общая интоксикация проявляется в виде токсической энцефалопатии, ОСС недостаточности, токсической нефропатии, депрессии кроветворения. Резорбтивное действие наиболее сильно проявляется у азотистого иприта. По тяжести общерезорбтивных явлений различают клинические формы: тяжелая (острая), средняя, легкая. Хроническое поражение азотистым и сернистым ипритом определяют как кахектическую форму. Сочетанные ипритные поражения характеризуются проникновением ипритов в организм несколькими путями. При сочетанных поражениях развиваются: генерализованное поражение кожных покровов, дыхательных путей, глаз и желудочно-кишечного тракта. Это создает условия для всасывания ипритов в кровь и развития выраженных резорбтивных изменений. Клиника резорбтивного действия характеризуется развитием следующих периодов: скрытый (до суток); токсический шок (1 неделя); радиомиметический (2-3-я неделя); ипритная кахексия (4-6-я неделя); период исходов, восстановления, осложнений и последствий (до года и больше). Признаками резорбтивного действия азотистого иприта являются: шоковое состояние, частые судороги, жидкий стул, радиомиметический синдром.

Для действия ипритов характерны:

--- вялость течения воспалительных процессов,

--- слабость репаративных механизмов,

--- скудность клеточных реакций, дисбаланс в продукции цитокинов.

Особенности клинической картины поражения ипритами (отличие от люизитного поражения):

---- «немой» контакт, что объясняется анальгезирующим действием ипритов на чувствительные нервные окончания (бессимптомность контакта),

---- наличие скрытого периода действия яда: от 2-4 часов при поражении глаз до 6-12 часов – при поражении органов дыхания и кожи, присоединение вторичной инфекции,

--- вялое течение репаративных процессов, замедленное заживление;

--- наличие эффекта функциональной кумуляции: пораженные ткани после заживления становятся повышенночувствительными как к повторным воздействиям иприта, так и к другим неспецифическим агентам внешней среды. Сенсибилизация к повторному действию токсикантов, обострение поражений под влиянием неспецифических агентов внешней среды.

Медицинская помощь при отравлении ипритами

Поскольку иприты проникают в организм через кожные покровы, то использование защитных костюмов и противогазов является обязательной мерой профилактики. Для предотвращения местного и общего поражения через кожу необходима специальная одежда, т.к. через хлоптачобумажную ткань иприт достаточно легко проникает.

Первая помощь в очаге:

  1. Предупреждение и устранение местных воспалительно-некротических изменений - обработка открытых участков кожи рецептурой ИПП (полидегазирующая жидкость) или 1—15% водно-спиртовыми растворами хлорамина. Обработка глаз водой из фляги; надевание противогаза.

  2. Предупреждение и устранение токсического шока – вдыхание фицилина под маской противогаза

  3. Предупреждение и устранение радиомиметического синдрома при ипритных поражениях достигается теми же средствами, что и при поражениях ионизирующими излучениями. Аминотиоловые соединения - цистамин – 5-6 таблеток, прессорные амины – мексамин, мезатон. Димекарб 1-2 таблетки (до заражения)

Искусственное вызывание рвоты при попадании ОВ внутрь вне зоны заражения. Эвакуация из очага.

Доврачебная помощь при выходе из очага заражения:

  1. Предупреждение и устранение местных воспалительно-некротических изменений – дополнительная частичная специальная обработка – дополнительно обработать открытые участки кожи и прилегающее к ним обмундирование или одежду рецептурой ИПП. При отсутствии ИПП обработку провести 5-15% растворами хлораминов и дихлораминов, кашицей хлорной извести. Снятие противогаза, При попадании в глаза капель ОВ - обильно промывать глаза водой или 2% раствором натрия гидрокарбоната; заложить за веки 30% глазную унитиоловую мазь. Промыть полости рта и носа водой.

  2. Предупреждение и устранение токсического шока- при тяжелых ингаляционных поражениях – вдыхание притоводымной смеси или фицилина; промедол 2% 1 мл в/м; кофеин бензоат натрия 10% 1 мл п/к; ингаляция кислородом. При гипотонии – в/м 1 мл кордиамина. При пероральном отравлении – беззондовое промывание желудка, внутрь – 30-50 г активированного угля на 100 мл воды. При поражении люизитом – ввести в/м 5 мл 5% раствора унитиола.

  3. Предупреждение и устранение радиомиметического синдрома – диметкарб 1-2 таблетки (при ингаляционных и кожных поражениях).

Первая врачебная помощь

  1. Предупреждение и устранение местных воспалительно-некротических изменений - замена одежды, частичная специальная обработка; влажно-высыхающие фурацилиновые повязки, сменяемые через каждые 3 часа; повязки с 0,5% преднизолоновой мазью; повязки с 1-2% раствором хлорамина или противоожоговой эмульсией. При поражении глаз промывать 2% раствором натрия гидрокарбоната, 0, 25% раствором хлорамина, затем закапывать в глаза 1% раствор атропина сульфата, 1% раствор димедрола и 5% раствор токоферола. Заложить за веко 5% левомицетиновую глазную мазь. При поражении люизитом - заложить за веко – 30% унитиоловую мазь - антибиотики; преднизолон внутрь 10 таблеток по 5 мг.

  2. Предупреждение и устранение токсического шока и радиомиметического синдрома– обтирание пораженных участков кожи 1% раствором ментода и димедрола; закапывание в глаза 0,5 % раствора дикаина; вдыхание фицилина; феназепам в таблетках (при жалобах на боли и зуд); феназепам 3% 1 мл в/м ( при судорогах); инфузионная терапия при падении артериального давления. В/в 30% раствор тиосульфата натрия по определенной схеме; 2% раствор нуклеината натрия в/м 5 мл; димедрол 1 таблетке 2 раза в день; диметкарб по 1 таблетке 2-3 раза в день. В/в ввести рецептуру из равных количеств 30% раствора натрия тиосульфата и 5% раствора натрия цитрата по определенной схеме. При отравлении люизитом ввести 5-10 мл 5% раствора унитиола в/м. При пероральном отравлении – промыть желудок с помощью зонда 0,02% раствором калия перманганата. В/м 1 мл 1% раствора мезатона, 400-800 мл 5% раствора глюкозы; 200 мл 1% раствора кальция хлорида в/в. При развитии отека легких – в/в фуросемид, преднизолон или гидрокартизон, строфантин или коргликон в растворе натрия хлорида. Ингаляция кислорода с пеногасителем. При нарастающем отеке гортани- в/в преднизолон, кальция глюконат, раствор димедрола, эуфилина, адреналина. При отсутствии эффекта – трахеостомия, ингаляция кислорода. Экстренная эвакуация после купирования токсического отека легких в положении лежа. В пути продолжать противошоковую терапию. Ингаляцию кислорода.

Квалифицированная и специализированная медицинская помощь

  1. Предупреждение и устранение местных воспалительно-некротических изменений – санитарная обработка; при буллезном дерматите отсасывание жидкости из пузырей. В случае наполнения пузырей – удаление оболочки пузыря и накладывание влажно-высыхающей повязки. Смазывание эрозий на слизистых масляными эмульсиями красок ( 1-2% водным раствором бриллиантовой зелени или метиленовой сини), после подсыхания эрозии накладывают повязку с 5% синтомициновой мазью. Применение влажно-высыхающих повязок и местных ванн из 1-2% раствора хлорамина, 3% раствора борной кислоты или 0,002% раствора фурацилина. Язвенно-некротические дерматиты лечат 5% линиментом дибунола, мазью Вишневского; 1% протарголовой мазью на ланолине. Масляные щелочные ингаляции; антибиотики по схеме; остальное тоже, что при первой врачебной помощи. Лечение поражений глаз – за веки 5% синтомициновыя или 30% унитиоловая глазная мазь.

  2. Предупреждение и устранение токсического шока и радиомиметического синдрома. Полная санитарная обработка. Предупреждение и лечение ипритного шока достигается путем ликвидации афферентной импульсации с места поражения, нормализацией основных процессов в ЦНС, восстановления нарушенного кровообращения, дыхания и обмена веществ.При поражении люизитом продолжать антидотную терапию унитиолом по 5 мо 5% раствора в/м, а при тяжелых поражениях - в/в тоже по определенной схеме. Ускорение удаления всосавшегося яда в/в введение специальной поляризующей смеси (раствор глюкозы, инсулин, раствор калия хлорида, магния сульфата и рибоксина), волювена 400 мл реамберина 400 мл, лактосола 400 мл; физиологического раствора до 7 л в сутки, 25% раствора магния сульфата 10 мл, 10% раствора кальция глюконата 10 мл 3-4 раза в сутки. Симптоматическая и поддерживающая терапия. В/в 40% раствор глюкозы, преднизолон, комплекс витаминов. При развитии признаков острой почечной недостаточности – лазикс в/в до появления мочи. Дополнительно – в/в раствор эуфилина, раствор никотиновой кислоты и новокаина. При неэффективности ланных мероприятий – гемодиализ. При нарастающей печеночной недостаточности – витамины группы В и С, стероидные гормоны, гепатопротекторы, гипербарическая оксигенация, обменный плазмаферез. При развитии гиперкоагуляции – в/в гепарин, свежезамороженная плазма, контрикал в растворе натрия хлорида. Для профилактики инфекционных осложнений – антибиотики . для профилактики осложнений со стороны желудочно-кишечного тракта – раствор кваматела. При выраженных нарушениях дыхания – ИВЛ. Противоаритмические средства. как при оказании первой врачебной помощи, дополнительно- введение эпокрина.

Дегазация для разложения ипритов на местности или различных поверхностях пригодны любые средства окисляющего или хлорирующего действия, если они сами не повреждают дегазируемые поверхности. Для дегазации можно использовать растворы гипохлорита натрия, суспензии или растворы гипохлорита кальция и его солей, хлорную известь. Металлические и деревянные поверхности могут быть рбработаны растворами N-хлораминов аренсульфокислот (ДТ-2, ДТ-6) в дихлорэтане, а также алкоголятов алифатических спиртов, эфиро- или аминоспиртов со щелочными металлами в различных растворителях. Последние пригодны для дегазации кожи.

1.2 Необразующие аддукты нуклеиновых кислот

Рицин

Яд растительного происхождения, растительный гликопротеид. Обнаружен в оболочке семян клещевины. Семена – каплевидной формы, мраморной окраски Клещевина – многолетнее травянистое растение семейства молочайных. Выращивается как масляничное растение для производства касторового масла. Отравление возможно при приеме в пищу семян, содержащих алкалоид рицин, смертельной дозой считается 0,02 г, которая может содержаться в 2-3 семенах. Расчетная смертельная доза вещества для человека при приеме через рот составляет около 0,3 мг/кг. Жмых, остающийся после отжатия касторового масла, содержит до 3% рицина. Отходы этого производства могут послужить источником получения яда, смертельные дозы которого для различных животных составляют от 1 до 100 мкг/кг. Рицин является наиболее древним представителем группы биологических токсинов. Рицин мало пригоден для заражения воздуха, но его можно использовать в виде аэрозолей для снаряжения холодного оружия и огнестрельных боеприпасов. При ингаляции мелкодисперсного аэрозоля его токсичность значительно выше. Небольшие повреждения кожных покровов становятся смертельно опасными в случае проникновения в рану рицина. Через неповрежденную кожу рицин не оказывает токсического действия.

Очищенный рицин представляет собой белый, не имеющий запаха, легко диспергируемый в воздухе и растворимый в воде порошок, устойчивый к воздействию температуры. Вещество мало устойчиво в водных растворах и при хранении постепенно теряет токсичность.

Патогенез

Вещество легко проникает в организм через легкие, раневые поверхности, значительно хуже через желудочно-кишечный тракт. Молекула рицина состоит из двух субъединиц А и В, которые соединены между собой дисульфидной связью. Субъединицы сами по себе не токсичны, токсическое действие проявляется только при условии кооперативного действия обеих субъединиц в составе молекулы рицина. Взаимодействуя с клетками, формирующими альвеолярно-капиллярный барьер и слизистую оболочку желудочно-кишечного тракта , рицин проникает в поверхность клеточной мембраны с трансформированием ее цепи. Фиксация рицина на мембране клеток и его проникновение в клетку осуществляется с помощью В-субъединицы, которая связывается со специфическим рецептором. После проникновения рицина в клетку происходит освобождение А-субъединицы, которая и оказывает повреждающее действие. Связываясь с большой субъединицей рибосомы, А-цепь рицина приводит к нарушению синтеза белка. Рицин избирательно связывается с углеводными компонентами поверхности клеточной мембраны, активирует протеолитические процессы, инициируя разрушение клеточных белков, что приводит к гибели клеток.

Клиника

Симптомы отравления рицином проявляются через 1-3 суток после попадания яда в организм даже при воздействии дозы, многократно превышающей смертельную, и строго зависят от пути поступления яда в организм.

Проявление интоксикации складывается из картины местного и резорбтивного действия, в основе которого лежат цитотоксические и цитостатические эффекты.

Рицин отличает высокая ингаляционная токсичность. При ингаляции рицином развивается острая пневмония и смерть в течение 36-48 часов от отека легких. При более легком поражении развивается тяжелое острое воспаление слизистой оболочки дыхательных путей с перибронхиальным отеком ткани, переходящее в гнойный трахеобронхит и крайне тяжелую очаговую пневмонию, завершающуюся некрозом легочной ткани.

Клиническая картина перорального отравления рицином напоминает интоксикацию (пищевую) и характеризуетя повышением температуры тела, диареей, развитием дыхательной и почечно-печеночной недостаточности, вплоть до развития эндотоксического шока. В ряде случаев описаны явления гемолиза и геморрагического энтерита. При пероральном воздействии превалируют явления гастроинтестинального синдрома: тошнота, рвота, лихорадка, жажда, сухость в горле, кровавый понос. Происходит быстрое изъязвление слизистой оболочки желудка и тонкой кишки с некрозом мезентеральных лимфатических узлов.

При попадании в раны через 12-24 часа у отравленных наблюдается сильный озноб, повышение температуры тела до 41 градуса С, сильная головная боль и общая слабость, мидриаз, судороги, резкое падение артериального давления. В дальнейшем развивается тяжелое поражение печени почек. Общность симптомов отравления рицином и бактериальной интоксикации обусловлена способностью лектинов, в том числе и рицина, связываться с рецептором липополисахаридов (бактериальных эндотоксинов), экспрессируемых макрофагами, посредством которых инициируется каскад воспалительных реакций при участии эффектов иммунной системы.

Летальный исход наступает на 2-7 сутки.

При попадании аэрозоля и , особенно, порошкообразного рицина в глаза развивается воспалительный процесс, переходящий в тяжелый панофтальмит с последующей гибелью глаза. В легких случаях наблюдаются: конъюнктивит, острый ринит, хроническое воспаление бронхов.

Лечение

Первая и доврачебная помощь

Надеть противогаз или респиратор при нахождении в зараженной зоне. Частичная санитарная обработка. Обеспечение адекватного дыхания (санация носоглотки, установка воздуховода, вентиляция легких через маску с помощью мешка Амбу). При сохранении сознания – беззондовое промывание желудка 2% раствором натрия гидрокарбоната, обильное питье, активированный уголь. Для ослабления местного действия рицина – тщательно промыть глаза, слизистые оболочки носоглотки и полости рта 4% раствором натрия гидрокарбоната или физиологическим раствором, или водой. Кожу обработать 2% раствором формальдегида или 60-70% раствором этилового спирта. Транспортировка в положении лежа на боку.

Первая врачебная помощь

Устранение острых дыхательных и сердечно-сосудистых расстройств – туалет полости рта, введение воздуховода и оксигенотерапия. Зондовое промывание желудка 2% раствором натрия гидрокарбоната, с последующим введением 30—50 г активированного угля и 30 г солевого слабительного (магния сульфат). Внутрь – обволакивающие средства – альмагель, коалин. Сифонная клизма, слабительное (30 г магния сульфата в 500 мл воды). Обильное и частое питье со стимуляцией диуреза (гипотиазид или фуросемид внутрь). Инфузионная терапия: в/в 400-800 мл 5% раствора глюкозы. Транспортировка в положении лежа на боку.

Квалифицированная и специализированная медицинская помощь.

При отравлении тяжелой степени - максимально быстрая госпитализация в отделение анестезиологии и реанимации. Лечение – симптоматическое. Применение антидотов D-галактозы и брефелдина А (ингибитора транспорта рицина в аппарате Гольджи). Для предотвращения осаждение гемоглобина в клубочковом аппарате почек проводят ощелачивание мочи в/в введением 4% раствора натрия гидрокарбоната под контролем кислотно-основного состояния. При болях в глазах – местно -0,3% раствор дикаина. Для защиты слизистой оболочки желудочно-кишечного тракта – перорально - омепразол 40 мг 2 раза в сутки, маалокс-70 по 1 пакету 3 раза в сутки, угольные сорбенты по 30-50 г/сут. При обезвоживании 1-2 степени – перорально - регидрон (1 пакет растворить в 1 литре кипяченой воды) 50-100 мл/кг в течение 4-10 часов, а при 3-4 степени – в/в капельно физиологический раствор или равные его объемы с 5% раствором глюкозы в количестве 1000-1500 мл. При тяжелых и очень тяжелых формах - в/в капельно раствор «Трисоль», реополиглюкин в/в капельно 500 мл. Симптоматическая и поддерживающая терапия. При развитии острой дыхательной недостаточности – интубация трахеи, ИВЛ. По показаниям – лечение токсического отека легких.

Оказание помощи при отравлении рицином проводится по общим правилам лечения острых интоксикаций.

2. Тиоловые яды

К тиоловым ядам относятся вещества, в основе механизма токсического действия которых лежит способность связываться с сульфгидрильными группами, входящими в структуру большого количества биологических молекул, среди которых структурные белки, энзимы, нуклеиновые кислоты, регуляторы биологической активности и т.д. Рибосомы клеток млекопитающего содержат около 120 сульфгидрильных групп, причем примерно половина из них имеет функциональное значение для осуществления белкового синтеза. Гормоны полипептидной структуры, такие как инсулин и глюкагон, также содержат сульфгидрильные группы в молекулах и т.д.

Образование комплекса токсиканта с SH-группами биомолекул сопровождается их повреждением, нарушением функции, что и инициирует развитие токсического процесса.

К числу тиоловых ядов, прежде всего, относятся мышьяк (и его органические и неорганические дериваты, в том числе люизит, какодиловая кислота), ртуть (в том числе этилмеркурхлорид), цинк, хром, никель, кадмий и их многочисленные соединения.

Сродство различных тиоловых ядов к разным соединениям, содержащим SH-группы, неодинаково. Неодинакова и токсикокинетика ядов. Этим объясняются различия токсичности веществ и особенности формирующегося токсического процесса.

Среди веществ рассматриваемой группы для военной медицины наибольший интерес представляют соединения мышьяка.

2.1 Соединения мышьяка

Мышьяксодержащие вещества широко используются в медицине, а также в качестве пестицидов (инсектицидов и гербицидов), осушителей в производстве изделий из хлопка, консервантов древесины, пищевых добавок в рацион некоторых животных и т.д. Хотя случаи массовых интоксикаций соединениями мышьяка в настоящее время редки, сохраняется потенциальная возможность таких инцидентов. Широкое применение мышьяксодержащих веществ в хозяйственной деятельности, их доступность, делают возможным их применение с террористическими целями.

На основе мышьяка в начале ХХ века были созданы высокотоксичные боевые отравляющие вещества, запасы которых в настоящее время подлежат уничтожению.

цитотоксичность - это... Что такое цитотоксичность?

цитотоксичность - это... Что такое цитотоксичность?

ЦИТОТОКСИЧЕСКОГО ДЕЙСТВИЯ

ТЕМА 5

ОТРАВЛЯЮЩИЕ

И ВЫСОКОТОКСИЧНЫЕ ВЕЩЕСТВА

ЦИТОТОКСИЧЕСКОГО ДЕЙСТВИЯ

Цитотоксическим называется повреждающее действие веществ на организм путем формирования глубоких структурных и функциональных изменений в клетках, приводящих к их гибели.В основе такого действия лежит прямое или опосредованное иными механизмами поражение внутриклеточных структур, сопровождающееся грубыми нарушениями генетического ап­парата клеток и клеточных мембран, процессов синтеза белка и других видов пластического обмена.

Следует отметить, что практически любая тяжелая интоксикация в той или иной степени сопряжена с повреждением клеток различных ти­пов. Однако часто повреждение носит вторичный характер (в результате стойкого нарушения токсикантами или продуктами их метаболизма ге­модинамики, газообмена, кислотно-основного состояния, ионного со­става внутренней среды организма и т. д.) либо проявляется при воздей­ствии химических соединений на клетку лишь в очень высоких дозах (на фоне уже развившихся иных признаков поражения). Вместе с тем сущест­вуют вещества, цитотоксическое действие которых обусловлено прямой ата­кой ксенобиотика на структурные элементы клетки и является основным в профиле вызываемого ими токсического процесса. Такие вещества можно отнести к группе цитотоксикантов.К числу наиболее токсичных предста­вителей цитотоксикантов относятся:

1. Металлы:

• мышьяк;

•ртуть и др.

2. Элементорганические соединения:

• сероорганические соединения (галогенированные тиоэфиры: сернистый иприт);

• азоторганические соединения (галогенированные алифатиче­ские амины и некоторые аминосоединения жирного ряда: азо­тистый иприт, этиленимин);

• мышьякорганические соединения (галогенированные алифати­ческие арсины: люизит);

• органические окиси и перекиси (этиленоксид) и др.

3. Галогенированные полициклические ароматические углеводороды:

• галогенированные диоксины;

• галогенированные бензофураны;

• галогенированные бифенилы и др.

4. Сложные гетероциклические соединения:

• афлатоксины;

• трихотеценовые микотоксины;

• аманитин и др.

5. Белковые токсины:

• рицин и др.

Для военной токсикологии особый интерес представляют вещества, способные при экстремальных ситуациях вызывать массовые санитарные потери. К числу таковых из группы цитотоксикантов относятся прежде всего боевые отравляющие вещества кожно-нарывного действия (иприт, азотистый иприт, люизит), некоторые промышленные агенты (соедине­ния мышьяка, ртути и т. д.), фитотоксиканты и пестициды, и их токсич­ные примеси (диоксин и диоксиноподобные соединения), а также неко­торые другие соединения.

Общим в действии ОВТВ этой группы на организм являются:

» медленное, постепенное развития острой интоксикации (про­должительный скрытый период, постепенное развитие токсичес­кого процесса);

• изменения со стороны всех органов и тканей (как на месте ап­пликации, так и после резорбции), с которыми токсикант или продукты его метаболизма в силу особенностей токсикокинети-ки способны непосредственно взаимодействовать;

• основные формы нарушений со стороны органов и систем, во­влеченных в токсический процесс: воспалительно-некротиче­ские изменения, угнетение процессов клеточного деления, глу­бокие функциональные расстройства внутренних органов.

Вместе с тем поражения различными токсикантами имеют и свою специфику, обусловленную особенностями основного механизма их ток­сического действия. Основные ОВТВ рассматриваемого класса в соответ­ствии с особенностями механизма действия можно отнести к одной из следующих групп:

1. Ингибиторы синтеза белка и клеточного деления.

1.1. Образующие аддукты нуклеиновых кислот:

■ сернистый иприт, азотистый иприт.

1.2. Не образующие аддукты нуклеиновых кислот:

■ рицин.

2. Тиоловые яды:

» мышьяк, люизит.

3. Токсичные модификаторы пластического обмена:

■ галогенированные диоксины, бифенилы.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2
Иприт HD  
Химическое название   Бис(2-хлорэтил)сульфид  
Агрегатное состояние   Жидкость  
Молекулярный вес   159,08  
Плотность пара (по воздуху)   5,4  
Плотность жидкости   1,269 (при 25° С)  
Температура кипения   217° С (расчетная)  
Температура разрушения   149-177° С  
Растворимость в воде, %   0,05  
Скорость гидролиза Период полуразрушения при 25° С в дистиллированной воде — 8,5 мин; в соленой воде — 60 мин  
Продукт гидролиза Тиодигликоль, HCI  
Растворимость в липидах Хорошая    
Стабильность при хранении Стабилен в стальных и алюминиевых контейнерах  
Запах Чесночный (горчичный)  
Скорость детоксикации Низкая    
Особенности действия Отсроченное — обычно первые симптомы появляются  
  спустя 4-6 ч после воздействия (в отдельных случаях  
  скрытый период достигает 12-24 ч). Повторное действие  
  даже небольших доз вызывает кумулятивный или даже  
  сверхкумулятивный эффект, благодаря сенситизации  
Среднесмертельная токсодоза   1,3 г-мин/м3  
(пара через легкие)      
Средненепереносимая   0,2 Г'мин/м3  
токсодоза (пара через легкие)      
Среднесмертельная токсодоза   10 Г'МИН/М3  
(пара через кожу)      
Иприт HD
Среднесмертельная доза жидкого иприта через кожу 9-100 мг/кг
Средненепереносимая токсодоза (пара на кожу) 1 г-мин/м3 (повреждение кожи)
Повреждение глаз 0,2 г-мин/м3
Среднесмертельная доза (поступление в желудочно-кишечный тракт) 0,7 мг/кг
Стойкость Зависит от способа применения и погодных условий. При обычной погоде — 1-2 сут, в зимних условиях — недели-месяцы Таблица 33
Основные свойства азотистого иприта
Азотистый иприт HN
Химическое название 2,2,2-трихлортриэтиламин
Агрегатное состояние Жидкость
Молекулярный вес 170,1
Плотность пара (по воздуху) 5,9
Плотность жидкости 1,09 (при 25° С)
Температура кипения 86° С
Растворимость в воде, % 0,04
Скорость гидролиза Медленная, благодаря слабой растворимости в воде
Продукт гидролиза Аминогликоли, HCI
Растворимость в липидах Хорошая
Стабильность при хранении Стабилен в стальных и алюминиевых контейнерах
Запах Слабый рыбный
Скорость детоксикации Низкая
Особенности действия Начало эффектов отсрочено на 12 ч и более
Среднесмертельная токсодоза (пара через легкие) 1,0 г»мин/м3
Средненепереносимая токсодоза (пара через легкие) 0,1 г-мин/м3
Среднесмертельная токсодоза (пара через кожу) 20,0 г«мин/м3
Средненепереносимая токсодоза (пара на кожу) 9,0 г»мин/м3 (повреждение кожи)
Повреждение глаз 0,2 г-мин/м3
Стойкость Зависит от способа применения и погодных условий. При обычной погоде — 1-2 сут, в зимних условиях — недели-месяцы
         

Сернистый иприт — тяжелая маслянистая жидкость. В чистом виде бесцветная, почти без запаха. В неочищенном виде — темного цвета (в качестве примесей содержит 17-18% сульфидов). При низких концент­рациях обладает запахом, напоминающим запах горчицы или чеснока (отсюда еще одно название ОВ — «горчичный газ»). В воде плохо раство­рим. Хорошо растворяется в органических растворителях. Растворяется в других ОВ и сам растворяет их. Легко впитывается в пористые материа­лы, резину, не теряя при этом токсичности.

Азотистый иприт — маслянистая, слегка темная или бесцветная жид­кость, легко растворяемая в органических растворителях, но практически не растворяющаяся в воде.

Давление насыщенного пара ипритов — незначительное; возрастает с увеличением температуры. Поэтому в обычных условиях иприты испаря­ются медленно, создавая при заражении местности стойкий очаг. Основ­ное боевое состояние сернистого иприта — пары и капли.

Связь алкильных радикалов с атомами хлора в молекулах токсикантов может быть разрушена путем гидролиза. Конечными продуктами гидро­лиза являются нетоксичные соединения, поэтому реакция может быть использована для дегазации зараженных объектов. Гидролизу подверга­ется только растворившееся количество сернистого и азотистого ипри­тов. Поскольку растворимость токсикантов крайне низка, находящиеся в воде О В долго сохраняют свою токсичность. Полный гидролиз возможен лишь в условиях очень большого избытка воды (1 г сернистого иприта на 2000 г воды). Процесс гидролиза можно ускорить нагреванием заражен­ной воды и добавлением разбавленных щелочей.

В организме вещества также подвергаются дегалогенированию. При этом возможно образование промежуточных продуктов (сульфоний-катиона и иммоний-катиона), с действием которых на молекулы-мишени связывают механизм токсического действия ипритов.

Сернистый иприт подвергается окислению, при этом последователь­но образуются токсичные 2,2-дихлордиэтилсульфоксид (1) и 2,2-дихлор-диэтилсульфон (2):

Только глубокое окисление приводит к потере токсических свойств и полному разрушению молекулы иприта с образованием серной кислоты, хлористого водорода, диоксида углерода и воды.

При хлорировании ипритов в водной и безводной среде их молекулы разрушаются, что сопровождается потерей токсических свойств.

Токсикокинетика

Иприты способны проникать в организм, вызывая при этом пораже­ние, любым путем: ингаляционно (в форме паров и аэрозоля), через не­поврежденную кожу, раневую и ожоговую поверхности (в капельно-жидкой форме) и через рот с зараженной водой и продовольствием. Контакт с веществами не сопровождается неприятными ощущениями (немой контакт).

После поступления в кровь вещества быстро распределяются в орга­низме, легко преодолевая гистогематические барьеры, проникают в клет­ки. Метаболизм веществ проходит с большой скоростью. Так, в экспери­ментах на кроликах показано, что 90% сернистого иприта, меченного по сере (35S), исчезает из крови в течение 20 мин, а уже через 10 мин радио­активность обнаруживается в моче. Наибольшая радиоактивность опре­деляется в органах, выполняющих экскреторную функцию (почки, лег­кие, печень). В моче животных после внутривенного введения иприта (35S) обнаруживаются продукты его превращения (гидролиза и окисления молекулы). Метаболизм веществ осуществляется при участии тканевых микросомальных ферментов. Поскольку в процессе метаболизма ипри-тов образуются токсичные промежуточные продукты (сульфоний, иммо-ний катионы и др.), индукция микросомальных ферментов, вызываемая в эксперименте путем назначения специальных средств (производные барбитуровой кислоты и др.), сопровождается усилением их токсичности.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 3

В настоящее время с целью создания эффективных противоопухолевых препаратов активно изучается группа полипептидных токсинов высших растений, действие которых обусловлено, как принято считать, ингиби-рованием синтеза белка в клетках млекопитающих. К ним относятся аб-рин, модецин, кротин, рицин и другие вещества, сходные по молекуляр­ной массе, структуре и характеру биологического действия.

Одним из наиболее изученных и токсичных представителей группы является рицин, рассматривавшийся ранее на предмет возможности ис­пользования в качестве боевого отравляющего вещества (В. В. Мясников, 1989; Курочкин и соавт., 1994).

Рицин

Рицин в большом количестве (до 3%) содержится в бобах клещевины обыкновенной (Ricinus communis L), откуда его и извлекают методом экст­ракции.

Физико-химические свойства. Токсичность

Рицин относится к классу лектинов — растительных гликопротеидов, in vitro агглютинирующих клетки млекопитающих в результате избиратель­ного связывания с углеводными компонентами поверхности клеточной мембраны. Белок этот состоит из двух полипептидных цепей, соединенных дисульфидной связью. А-цепь состоит из 265 аминокислот и 6 углеводных фрагментов. Молекулярная масса А-цепи — 32 ООО дальтон. В-цепь рицина состоит из 260 аминокислот, фрагментов глюкозамина и маннозы. Молеку­лярная масса В-цепи равна 34 ООО дальтон.

Очищенный рицин представляет собой белый, не имеющий запаха, легко диспергируемый в воздухе и растворимый в воде порошок. Вещест­во малоустойчиво в водных растворах и при хранении постепенно теряет токсичность. При низких температурах водные растворы сохраняются достаточно долго.

Рицин токсичен для большинства видов теплокровных животных. Расчетная смертельная доза вещества для человека при приеме через рот составляет около 0,3 мг/кг. При ингаляции мелкодисперсного аэрозоля его токсичность значительно выше. Через неповрежденную кожу рицин не оказывает токсического действия.

Токсикокинетика

Вещество легко проникает в организм через легкие, значительно хуже — через желудочно-кишечный тракт. Взаимодействуя с клетками, формирующими альвеолярно-капиллярный барьер и слизистую оболочку ЖКТ, рицин повреждает их. Попав в кровь, вещество распределяется в организме. Через гематоэнцефалический барьер проникает плохо. Значи­тельная его часть быстро фиксируется на поверхности эритроцитов, кле­ток эндотелия различных органов и тканей. Время пребывания несвязан­ной формы токсина в крови не превышает нескольких минут. Токсикант разрушается при участии протеолитических ферментов.

Основные проявления интоксикации

Сведения о токсическом действии рицина скудны. Они получены главным образом при изучении случаев отравления людей клещевиной, а также в экспериментах на лабораторных животных. Признаки поражения проявляется, как правило, через сутки — трое после попадания вещества в организм. Даже значительное увеличение дозы токсиканта не приводит к существенному сокращению продолжительности скрытого периода. Проявления интоксикации складываются из картины местного и резорб-тивного действия, в основе которого лежат цитотоксический и цитостатический эффекты, нарушение процессов метаболизма в клетках, с кото­рыми вещество вступает в контакт.

При заглатывании семян клещевины животными или людьми через 10-12 ч или позднее появляются признаки сильного раздражения желу­дочно-кишечного тракта: тошнота, рвота, сильные боли в животе, при­ступы кишечной колики, профузный понос (часто с кровью). Позже развиваются лихорадка, головная боль, цианоз кожных покровов, появ­ляется чувство жажды, артериальное давление падает, пульс частый сла­бого наполнения, выступает холодный пот. В крайне тяжелых случаях на высоте интоксикации (на вторые — третьи сутки) наблюдаются судорож­ный синдром, признаки поражения печени (желтуха) и почек (альбуми­нурия, гематурия, уменьшение количества отделяемой мочи вплоть до анурии). При смертельных интоксикациях летальный исход наступает, как правило, на 2—7-е сут. Для несмертельного отравления клещевиной характерно затяжное течение, проявляющееся гипертермией, гиподина­мией, заторможенностью, прогрессирующей слабостью, анорексией, по­носом, истощением.

Описан случай имплантации частиц бобов клещевины под кожу голе­ни с целью умышленного членовредительства. Через 12—24 ч у отравлен­ного наблюдались сильный озноб, повышение температуры тела до 39-41° С, сильная головная боль и общая слабость. Через 7 сут на месте введения образовалась глубокая, болезненная язва, не заживавшая более 2 лет.

Пыль, образующаяся при переработке клещевины и других растений, содержащих токсичные лектины, может вызывать конъюнктивит, острый ринит, фарингит, хроническое воспаление бронхов. У пострадавших на­блюдаются слезотечение, головная боль, кашель, одышка со свистящим дыханием и т. д. При попадании порошкообразного рицина в глаза раз­вивается воспалительный процесс, переходящий в тяжелый панофталь-мит.

Характерно аллергизирующее действие рицина. Человек, однажды подвергшийся действию пыли, содержащей вещество, становится чувст­вительным к ничтожным количествам токсиканта.

В эксперименте установлена высокая ингаляционная токсичность ри­цина. При поражении аэрозолем в высокой концентрации у животных развиваются тяжелое острое воспаление слизистой оболочки дыхатель­ных путей с перибронхиальным отеком ткани, переходящее в гнойный трахеобронхит, крайне тяжелая очаговая пневмония, завершающаяся не­крозом легочной ткани.

Резорбтивное действие рицина при его системном введении экспери­ментальным животным проявляется выраженным нарушением проница­емости сосудов, изменениями со стороны системы крови, деструктивны­ми процессами в печени, почках, миокарде. У отравленных животных обнаруживаются умеренный отек легких и кровоизлияния в легочную ткань, гидроторакс, экссудативный плеврит, отек мозга, асцит, выражен­ный геморрагический гастроэнтероколит, кровоизлияния во внутренние органы. В основе нарушения сосудистой проницаемости лежат повреждение эндотелиальных клеток, а также деструктивные изменения стенок сосудов.

У крыс, отравленных рицином, уже в первые часы после воздействия наблюдаются морфологические признаки активации ретикуло-эндотели-альных элементов печени в виде их гипертрофии и гиперплазии, затем отмечаются некротические изменения синусных клеток, а затем жировое перерождение и некроз гепатоцитов. Участки некроза располагаются как в центральных, так и в периферических отделах печеночных долек. В почках в выделительных канальцах первого и второго порядка выражена дистрофия эпителия. В сердечной мышце выявляются признаки острого очагового миокардита.

В крови отравленных лабораторных животных (на 3-й — 20-е сут) отмечаются умеренный гемолиз, стойкий нейтрофильный лейкоцитоз, лимфоцитоз, моноцитоз. Изменяются реологические свойства крови. Повышается уровень фибриногена в крови, активируется система пре­вращения фибриногена в фибрин. Складываются условия для диссеми-нированного внутрисосудистого свертывания крови.

Механизм токсического действия

Всю совокупность токсических процессов, развивающихся при по­ражении рицином, можно объяснить повреждением клеток различных органов и тканей. В токсическом действии рицина на клетки можно вы­делить три периода: фиксации токсина на мембране клеток, проникно­вения в клетку, повреждения клетки.

Фиксация рицина на мембране клеток осуществляется путем взаи­модействия В-цепи молекулы с рецепторами, активно связывающими лектины. Центры связывания имеются в клетках различных типов, од­нако количество таких центров на поверхности мембран различных кле­ток неодинаково. Этим объясняется и неодинаковая чувствительность различных клеточных популяций к токсиканту. Так, в опытах in vitro установлено, что у лимфоцитов и некоторых других соматических кле­ток количество участков связывания рицина достигает 106— 108 на клет­ку, У эритроцитов — значительно меньше. Связывание токсина клетка­ми in vitro существенно блокируется лактозой.

Проникновение токсина, фиксировавшегося на поверхности мембра­ны, в клетку осуществляется путем эндоцитоза. Вещества, усиливающие проницаемость биологических мембран (нигерицин), in vitro в несколько раз увеличивают цитотоксическое действие рицина. Внутри клетки моле­кула токсина разрушается с высвобождением А-цепи, которая и оказыва­ет повреждающее действие.

Основной «точкой приложения» А-цепи рицина являются рибосомы, а именно их 60-S (большие) субъединицы. Как известно, процесс транс­ляции — синтез полипептидных цепей на матрице информационной РНК согласно генетическому коду — осуществляется преимущественно на рибосомах сложным комплексом макромолекул. Этот комплекс, по­мимо рибосомальных макромолекул, включает: информационные РНК, транспортные РНК, аминоацил-тРНК-синтетазы, а также белковые факторы инициации (начала) синтеза, элонгации (удлинения) полипептид­ной цепи, терминации (окончания) процесса. Рицин связывается с рибо­сомами в той их области, где последние взаимодействуют с факторами элонгации (ФЭ-1 и ФЭ-2). В результате удлинение формируемых на ри­босомах полипептидных цепей прекращается — нарушается синтез белка в клетке и она погибает. Синергистами токсического действия рицина являются ингибиторы синтеза белка с иными механизмами повреждаю­щего действия, в частности, актиномицин Д, который нарушает процесс транскрипции (ДНК-зависимый синтез информационной РНК в клет­ках), задерживая продвижение РНК-полимеразы вдоль цепи ДНК.

По некоторым данным, рицин выводит из строя эндогенные ингибито­ры протеолиза в клетках, активирует протеолитические процессы, иници­ируя разрушение клеточных белков, что также приводит к гибели клеток.

Рицин, как и другие лектины, действуя в малых дозах, является силь­ным митогеном, активирующим клеточное деление и, в частности, про­лиферацию популяции Т-лимфоцитов в организме. Не исключено, что повреждение клеток органов и тканей, наблюдаемое при отравлении, мо­жет быть также следствием атаки на них активированных Т-киллеров, других фагоцитирующих элементов иммунной системы.

Мероприятия медицинской защиты

Специальные санитарно-гигиенические мероприятия:

• использование индивидуальных технических средств защиты (средства защиты органов дыхания) в зоне химического зараже­ния;

• участие медицинской службы в проведении химической развед­ки в районе расположения войск, проведение экспертизы воды и продовольствия на зараженность ОВТВ;

• запрет на использование воды и продовольствия из непроверен­ных источников;

• обучение личного состава правилам поведения на зараженной местности.

Специальные профилактические медицинские мероприятия:

• проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.

Специальные лечебные мероприятия:

•своевременное выявление пораженных;

• оказание первой, доврачебной и первой врачебной (элементы) помощи пострадавшим;

• подготовка и проведение эвакуации.

Медицинские средства защиты

Помощь пораженным оказывается по общим правилам с использовани­ем этиотропных и патогенетических средств терапии состояний, развиваю­щихся после воздействия яда (см. 6.4. «Основные принципы оказания первой, доврачебной и первой врачебной помощи при острых отравлениях»). Для ослабления местного действия рицина на догоспитальном этапе пора­женным необходимо тщательно промыть глаза, обработать слизистые обо­лочки носоглотки и полости рта водой, раствором соды или физиологиче­ским раствором. При пероральном отравлении с целью оказания помощи показано промывание желудка. При болях в глазах, по ходу желудочно-ки­шечного тракта показано назначение местных анестетиков. Поскольку ток­сический процесс развивается медленно, имеется резерв времени для эвакуа­ции пораженных в специализированные лечебные учреждения.

Специальные табельные средства медицинской защиты отсутствуют. Существует теоретическая возможность разработки таких средств. По­скольку рицин является полным антигеном, возможно создание специ­фических антитоксических сывороток. Использование таких препаратов с профилактической целью могло бы оказывать защитное действие. Од­нако их лечебное применение будет затруднено, так как рицин быстро элиминируется из крови отравленных.

Тиоловые яды

К тиоловым ядам относятся вещества, в основе механизма токсического действия которых лежит способность связываться с сульфгидрильными группами, входящими в структуру большого количества биологических молекул, среди которых: структурные белки, энзимы, нуклеиновые кис­лоты, регуляторы биологической активности и т. д. В частности, к числу ферментов, содержащих сульфгидрильные группы, относятся: гидролазы (амилаза, липаза, холинэстераза, уреаза и др.), оксидоредуктазы (алко-гольдегидрогеназа, аминоксидазы, дегидрогеназы яблочной, янтарной, олеиновой кислот и др.), фосфатазы (аденозинтрифосфатаза, миокиназа, креатинфосфокиназа, гексокиназа и др.), ферменты антирадикальной защиты клетки (глутатионпероксидаза, глутатионредуктаза, глутатион-S-трансфераза, каталаза). Рибосомы клеток млекопитающего содержат око­ло 120 сульфгидрильных групп, причем примерно половина из них имеет функциональное значение для осуществления белкового синтеза. Гормо­ны полипептидной структуры, такие как инсулин и глюкагон, также со­держат сульфгидрильные группы в молекулах и т. д.

Образование комплекса токсиканта с SH-группами биомолекул со­провождается их повреждением, нарушением функции, что и иницииру­ет развитие токсического процесса.

К числу тиоловых ядов прежде всего относятся металлы: мышьяк, ртуть, цинк, хром, никель, кадмий, и их многочисленные соединения. Сродство различных тиоловых ядов к разным соединениям, содержащим SH-группы, неодинаково. Неодинакова и токсикокинетика ядов. Этим объясняются различия токсичности веществ и особенности формирую­щегося токсического процесса. Среди веществ рассматриваемой группы для военной медицины наибольший интерес представляют соединения мышьяка.

Соединения мышьяка

Мышьяксодержащие вещества широко используются в медицине, а также в качестве пестицидов (инсектицидов и гербицидов), осушителей в произ­водстве изделий из хлопка, консервантов древесины, пищевых добавок в рацион некоторых животных и т. д. Хотя случаи массовых интоксикаций соединениями мышьяка в настоящее время редки, сохраняется потенциа­льная возможность таких инцидентов. Так, в Японии (1972 г.) более 12 тыс детей получили отравление консервированным молоком, зараженным мы­шьяком. Случай привел к гибели 130 человек. Широкое применение мы-шьяксодержащих веществ в хозяйственной деятельности, их доступность делают возможным их применение с террористическими целями.

На основе мышьяка в начале XX в. были созданы высокотоксичные боевые отравляющие вещества, запасы которых в настоящее время под­лежат уничтожению.

Общая характеристика

Мышьяк (As) — переходный элемент V группы периодической сис­темы, металлоид, атомный номер 33, атомная масса 74,9. В природе встречается в виде минералов: ауропигмент (AS2O3),реальгар (AS4S4), арсенопирит (FeAsS), примесей к рудам различных металлов. Способен пчаимодсйствовать с углеродом, водородом, кислородом, хлором, серой и образовывать многочисленные соединения.

По особенностям строения и биологической активности соединения мышьяка подразделяют на 3 основные группы:

а) неорганические соединения;

б) органические соединения;

в) арсин (ASh4).

К настоящему времени синтезировано более 6000 неорганических и ор­ганических соединений мышьяка. В группе неорганических соединений выделяют соединения трехвалентного (As+3 — арсениты — триоксид мышь­яка, арсенит натрия, трихлорид мышьяка и т. д.) и пятивалентного (As+5 — арсенаты) мышьяка (пятиокись мышьяка, мышьяковая кислота и т. д.).

Среди органических соединений также различают вещества, в кото­рых мышьяк может находиться в трех- и пятивалентном состоянии. Кро­ме того, выделяют алкильные и арильные органические производные этого элемента (рис. 37). К числу наиболее опасных органических соеди­нений трехвалентного мышьяка относятся хлорсодержащие алкильные производные — метилдихлорарсин, этилдихлорарсин, дихлорвинилхло-рарсин, трихлорвиниларсин и р-хлорвинилдихлорарсин — известное бо­евое отравляющее вещество кожно-нарывного действия (люизит). Ариль­ные производные трехвалентного мышьяка, представляющие интерес для военной медицины, это прежде всего вещества, раздражающие носоглот­ку, например адамсит (фенарсазинхлорид) — боевое отравляющее веще­ство (см. гл. 8. «Отравляющие и высокотоксичные вещества раздражаю­щего действия»).

Представителями группы органических производных пятивалентного мышьяка являются, в частности, метиларсоновая кислота, диметиларси-новая кислота (какодиловая кислота). Последнее вещество входило в со­став «голубой жидкости», применявшейся американскими войсками в период Вьетнамской войны (70-е гг. XX в.) в качестве фитотоксиканта.

Некоторые соединения мышьяка обладают высокой биологической ак­тивностью при местном и резорбтивном действии на организм. При резорб­ции наиболее токсичными являются арсин (ASh4 — см. гл. 10. «Отравляю­щие и высокотоксичные вещества общеядовитого действия»), хлорсодержа-щие органические соединения трехвалентного мышьяка (люизит, этилдих-лорарсин и др.), а также неорганические соединения трехвалентного мышь­яка (арсенит натрия, триоксид мышьяка). Менее токсичны неорганические соединения пятивалентного мышьяка (арсенат натрия, пятиокись мышья­ка). Органические соединения пятивалентного мышьяка (какодиловая кис­лота, метиларсоновая ксилота и др.) по большей части относятся к числу малотоксичных соединений.

При местном действии наивысшей активностью обладает люизит (вы­зывает воспалительные изменения покровных тканей) и ароматические производные трехвалентного мышьяка (адамсит — раздражающее дейст­вие на слизистые оболочки глаз и дыхательных путей).

Токсические процессы, развивающиеся в результате острого действия неорганических соединений мышьяка и металлорганических соедине­ний, имеют существенные особенности.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 4

Хотя достаточно высокой токсичностью обладают все соединения мышьяка, в качестве диверсионных агентов наибольшую опасность пред­ставляют триоксид мышьяка (AS2O3), мышьяковистая кислота (HASO2) и ее соли, в частности арсенит натрия. Токсичность неорганических соеди­нений существенно зависит от их способности растворяться в воде. Так, водорастворимый арсенит натрия примерно в 10 раз более токсичен, чем хуже растворимый в воде оксид металла.

Арсенит натрия (NaAs02) — белый порошок, умеренно растворимый в воде. Достаточно стоек при хранении. Для людей смертельное количе­ство вещества при приеме через рот составляет 30—120 мг. Смертельной дозой для человека может оказаться 200 мг триоксида As (AS2O3).

Токсикокинетика

Около 90% попавшего в желудочно-кишечный тракт вещества абсор­бируется. В виде аэрозоля возможно проникновение арсенита натрия че­рез легкие.

После поступления в кровь вещество довольно быстро перераспреде­ляется в органы и ткани (в крови неотравленных людей содержание мы­шьяка находится в пределах 0,002—0,007 мг/л). Наивысшие концентра­ции металла в тканях отмечаются через час после внутривенного введе­ния арсенита натрия экспериментальным животным. Наибольшее его количество определяется в печени, почках, коже (в последующем в ее придатках — ногтях, волосах), легких и селезенке. Металл проникает че­рез гематоэнцефалический барьер, однако концентрация его в головном мозге ниже, чем в других органах.

В большинстве органов содержание металла быстро падает (за 48 ч — в 10—60 раз). Исключение составляет кожа, где и через двое суток опреде­ляется большое количество мышьяка (до 30% от максимального уровня). Высокое сродство металла к коже и ее придаткам объясняют большим со­держанием сульфгидрильных белков (в частности кератина), с которыми As образует прочный комплекс.

Выделение As осуществляется главным образом с мочой. Скорость эк­скреции достаточно высока — в первые сутки выделяется до 30—50% вве­денного количества, более 80% — в течение 2,5 сут. Перед экскрецией As подвергается реакции метилирования. Большая его часть выводится из организма в форме монометиларсоновой и диметиларсиновой кислот.

У лабораторных животных (обезьяны) через 1—2 дня после введения соединений трехвалентного мышьяка в крови обнаруживали менее 1 % от введенной дозы. В этот период уровень металла в цельной крови в 2—7 раз выше, чем в плазме.

В норме мышьяк определяется в моче в количестве 0,01-0,15 мг/л.

Основные проявления острой интоксикации

Острое пероральное отравление мышьяком сопровождается пораже­нием желудочно-кишечного тракта, нервной системы, сердечно-сосуди­стой системы, системы крови, почек, печени.

При приеме через рот очень больших доз токсиканта развивается так называемая «паралитическая форма» отравления. Уже через несколько минут после воздействия яда появляются тошнота, рвота, боли в животе, профузный понос. Затем присоединяются болезненные тонические судо­роги, кожа приобретает цианотичный оттенок. Через несколько часов возможен смертельный исход на фоне полной утраты сознания, расслаб­ления мускулатуры тела, глубокого коллапса.

Чаще острое отравление характеризуется признаками тяжелого гаст­роэнтерита с постепенным развитием клинической картины. Первые симптомы появляются через полчаса — час после приема яда. Если мышь­як содержится в большом количестве пищи, начало заболевания может быть еще более отсрочено. Картина развивающегося отравления напоми­нает холеру. Основные симптомы поражения: чесночный или металличе­ский привкус во рту, сухость и жжение слизистой оболочки губ и полости рта, сильная жажда, тошнота, дисфагия, боли в животе, рвота. Если в те­чение нескольких часов рвота не прекращается, в рвотных массах появ­ляются следы крови. По прошествии нескольких часов (как правило, около суток) присоединяется сильный понос, гематемезис. Развиваются признаки обезвоживания организма, гиповолемия, падение артериально­го давления, нарушение электролитного баланса. Сознание спутано, со­стояние напоминает делирий. На ЭКГ регистрируются тахикардия, удли­нение интервала QT, изменение зубца Т, желудочковая фибрилляция.

Количество отделяемой мочи снижается, в моче определяется белок, а через 2—3 сут и кровь. В крови выявляются лейкопения, нормо- и микро-цитарная анемия, тромбоцитопения и т. д. Возможно развитие гемолиза.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 5
Органы и системы Признаки Время появления
Общие эффекты Жажда Гиповолемия-гипотензия Минуты Минуты
жкт Чесночный/металлический привкус во рту Жжение слизистой оболочки Тошнота, рвота Диарея Абдоминальные боли Гематемезис, мелена Стул в виде рисового отвара Немедленно Немедленно Минуты Минуты-часы Минуты-часы Часы Часы
Кровь Гемолиз Гематурия Лимфопения Панцитопения Часы Дни Недели Недели
Печень Жировое перерождение Центролобулярный некроз Дни Дни
Почки Гематурия, протеинурия Острая почечная недостаточность Часы-дни Часы-дни
Нервная система Спутанность сознания, делирий Энцефалопатия Судороги Сенсомоторная нейропатия Часы Минуты-часы Минуты-часы Недели

Галогенированные алифатические арсины

Важнейшими представителями ОВТВ из группы органических произ­водных мышьяка являются галогенированные алифатические арсины, такие как метил-, этилдихлорарсины, дихлорвинилхлорарсин и др. По своим токсическим свойствам эти вещества достаточно близки. Типич­ным представителем группы является боевое отравляющее вещество, относимое к группе «кожно-нарывных», р-хлорвинилдихлорарсин (лю­изит).

Люизит

Люизит синтезирован в 1917 г. американским химиком Льюисом и независимо от него немецким химиком Виландом.

Физико-химические свойства. Токсичность

Свежеперегнанный люизит — бесцветная, умеренно летучая жид­кость; при хранении через некоторое время приобретает темную окраску с фиолетовым оттенком. Запах люизита напоминает запах растертых ли­стьев герани. Температура кипения: 196,4° С, температура замерзания: -44,7° С. Относительная плотность паров люизита по воздуху равна 7,2. Люизит хорошо растворяется в органических растворителях, в жирах, смазках, впитывается в резину, лакокрасочные покрытия, пористые мате­риалы. Вещество примерно в 2 раза тяжелее воды, в которой оно растворя­ется плохо (не более 0,05%). Растворившийся в воде люизит довольно бы­стро гидролизуется с образованием хлорвиниларсеноксида, уступающего по токсичности исходному агенту. Слабые щелочи ускоряют гидролиз. Люизит легко окисляется всеми окислителями (йодом, перекисью водо­рода, хлораминами и т. д.) с образованием малотоксичной хлорвинилмы-шьяковой кислоты.

Попавший в окружающую среду люизит формирует зоны стойкого химического заражения. В зависимости от погодных условий вещество сохраняется на местности от суток (дождливая, теплая погода) до месяца (холодное время года).

Люизит в парообразном состоянии уже в концентрации 0,002 г/м3 вызы­вает раздражение глаз. LQ50 вещества при ингаляции составляет примерно 1,2-1,5 г-мин/м3 при действии через кожу — около 100 г-мин/м3. По­вреждающая глаз токсодоза паров люизита составляет менее 0,3 г • мин/м3, кожи — более 1,5 г • мин/м3. При попадании люизита в желудочно-кишеч­ный тракт смертельная доза для человека составляет 2-10 мг/кг.

Токсикокинетика

Благодаря высокой растворимости в липидах люизит сравнительно быстро всасывается через кожу и слизистые оболочки дыхательных путей и желудочно-кишечного тракта в кровь и ею разносится по органам и тканям организма. Вещество легко преодолевает гисто-гематические ба­рьеры и проникает внутрь клеток через клеточные мембраны.

Спонтанно и при участии ферментативных систем вещество подвер­гается гидролизу, окислению, дегалогенированию, деалкилированию. В результате образуются многочисленные мышьяксодержащие метаболи­ты, выделяющиеся из организма со скоростью выделения неорганиче­ских соединений металла (см. выше).

Основные проявления интоксикации

Клиническая картина поражения люизитом складывается из местно­го и резорбтивного действия яда. Местное действие характеризуется воспалительно-некротическими изменениями и явлением раздражения тканей на месте аппликации. Резорбтивное действие проявляется нару­шением пластического и энергетического обмена в органах и тканях, структурными изменениями и гибелью клеток, с которыми взаимодей­ствует токсикант (сосудистая система, нервная система, паренхиматоз­ные органы).

Поражение органов дыхания

Люизит в парообразном состоянии и в форме аэрозоля уже в низких концентрациях оказывает выраженное раздражающее действие на слизи­стую оболочку верхних дыхательных путей. Пораженные ощущают пер­шенье и царапанье в горле, появляются чихание, насморк, кашель, слю­нотечение, осиплость голоса. Объективно обнаруживаются гиперемия слизистых оболочек зева, гортани и носа и их отечность. При прекраще­нии контакта с ОВ все эти проявления интоксикации через сутки — двое исчезают.

В более тяжелых случаях через час — полтора после воздействия раз­виваются прогрессирующие воспалительно-некротические изменения слизистой оболочки трахеи и бронхов. Пораженные ощущают затрудне­ние при дыхании, появляется кашель, отделяется гнойная мокрота с про­жилками крови и обрывками некротизированной слизистой оболочки дыхательных путей. При аускультации выслушиваются сухие и влажные хрипы. Такая картина острой интоксикации сохраняется в течение не­скольких недель. При действии в концентрациях, близких к смертель­ным, люизит вызывает развитие токсического отека легких с характерной симптоматикой (см. 9.2. «ОВТВ удушающего действия»). При этом вос­палительно-некротические изменения дыхательных путей носят выра­женный характер. Выздоровление при благоприятном течении наступает только через полтора — два месяца.

Поражение глаз

При действии паров люизита в момент контакта появляются чувство жжения, боль в области глаз, слезотечение.

Легкая степень поражения органа зрения характеризуется симптома­ми катарального конъюнктивита (покраснением конъюнктивы, обильным слезотечением, светобоязнью). После прекращения действия токси­канта симптомы раздражения довольно быстро проходят.

При увеличении времени контакта или повышении концентрации паров ОВ наблюдается поражение средней степени тяжести: симптомы раздражения конъюнктивы более выражены, появляется отек конъюнк­тивы и век, развивается стойкий блефароспазм. В конъюнктиве появля­ются мелкоточечные кровоизлияния, постепенно катаральный конъюн­ктивит переходит в гнойный. Процесс может затянуться на несколько недель.

Действуя в более высоких концентрациях, яд вызывает развитие пора­жения тяжелой формы, при которой в процесс вовлекаются не только веки, конъюнктива, но и роговая оболочка глаза. В этих случаях, помимо симптомов описанных выше, через 5—8 ч появляются признаки помутне­ния роговицы. Через 10—14 дней кератит проходит, а через 20—30 дней наступает выздоровление.

При попадании в глаза люизита в капельно-жидком виде быстро раз­виваются выраженный отек всех тканей глаза, резкая гиперемия конъюн­ктивы, появляются кровоизлияния. Затем формируются очаги некроза роговицы. Процессу некротизации, кроме роговицы, подвергаются сли­зистая оболочка, подслизистая, клетчатка и мышцы глаза (панофталь-мит). Такое поражение заканчивается потерей глаза.

Поражение кожи

Действуя в капельно-жидком состоянии люизит быстро проникает в толщу кожи (в течение 3—5 мин). Скрытый период практически от­сутствует. Сразу развивается явление раздражения: ощущаются боль, жжение на месте воздействия. Затем проявляются воспалительные из­менения кожи, выраженность которых определяет степень тяжести по­ражения. Легкое поражение характеризуется появлением болезненной эритемы. Поражение средней степени тяжести приводит к образова­нию в течение нескольких часов поверхностного пузыря. Последний быстро вскрывается. Эрозивная поверхность эпителизируется в тече­ние 1—2 нед. Тяжелое поражение — это глубокая, длительно незажива­ющая язва.

При поражении кожи парами люизита наблюдается скрытый период продолжительностью 4—6 ч, за которым следует период формирования разлитой эритемы, прежде всего на открытых участках кожи. Действуя в высоких концентрациях, вещество может вызвать развитие поверхност­ных пузырей. Заживление наступает в среднем через 8—15 дней. При за­щите органов дыхания смертельное поражение парообразным люизитом практически не возможно.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 6

(в жидком состоянии)

Характер действия ОВ Люизит Иприт
Растекание капель Значительное Более слабое
Время всасывания 5 мин 20-30 мин
Скрытый период Отсутствует 4-6 ч
Эритема Яркая, имеет четкие границы со здоровой кожей (появляется через 30 мин) Неяркая (цвет семги), не имеет четких границ со здоровой кожей
Отек кожи Резко выражен Не выражен
Пузыри Через 12-13 ч единичные, большие Через 24 ч, сначала мелкие в виде ожерелья
Язва Дно ярко-красное с мелкоточечными кровоизлияниями, может захватывать кожу и подлежащие ткани Дно язвы бледное, глубина язвы меньшая
Максимум воспалительных изменений на месте поражения Через 48 ч Через 10-12 дней
Продолжительность течения 2-3 нед 6-8 нед
Пигментация вокруг поражения Отсутствует (имеется шелушение) Стойкая

Поражение желудочно-кишечного тракта

Поражение желудочно-кишечного тракта развивается при попадании люизита внутрь с зараженной водой или продовольствием и проявляется признаками тяжелого геморрагического гастроэнтерита. Почти сразу по­сле воздействия появляются слюнотечение, тошнота, обильная и упорная рвота (рвотные массы с запахом люизита и примесью крови), боли в жи­воте, понос. В эксперименте, отравленные животные угнетены, отказы­ваются принимать пищу, теряют в весе. Смерть может наступить в тече­ние 2—3 сут после приема токсиканта. При введении в желудок очень большого количества люизита (несколько смертельных доз) летальный исход наблюдается в первые часы интоксикации. При вскрытии обнару­живаются воспалительно-некротические изменения слизистой оболочки, подслизистого слоя по ходу пищеварительного тракта, глубокие язвы, до­ходящие до мышечного слоя в пищеводе или даже серозной оболочки в желудке. При несмертельном отравлении выздоровление происходит медленно.

Функциональные нарушения деятельности желудочно-кишечного тракта в форме тошноты, рвоты, поноса наблюдаются также и при иных способах аппликации вещества (ингаляционном, накожном) и являются проявлениями резорбтивного действия яда.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 7

При тяжелых поражениях люизитом одновременно с местными про­явлениями независимо от места аппликации развиваются симптомы, обусловленные резорбтивным действием яда. Отравленные эксперимен­тальные животные вялы, отказываются от пищи, рефлексы ослаблены. Состояние угнетения отмечается на протяжении всего периода интокси­кации. Перед смертью животные не реагируют на раздражители (корнеа-льный рефлекс сохраняется до наступления смерти).

Люизит, как и другие соединения трехвалентного мышьяка, является прежде всего сосудистым ядом. Наиболее характерно для люизитной ин­токсикации — прогрессирующее падение артериального давления, кото­рое у экспериментальных животных перед их гибелью может доходить до нулевых значений. Снижение давления крови наблюдается и в случае бо­лее легких поражений, заканчивающихся выздоровлением. При этом расстройства сердечной деятельности выражены сравнительно слабо и характеризуются учащением или замедлением частоты сердечных сокра­щений.

Люизит вызывает усиление проницаемости сосудов (артериол и ка­пилляров). Под влиянием токсиканта происходит выход жидкой части крови в серозные полости и межклеточное пространство тканей. Развива­ются отек легких, гидроторакс, гидроперикард и т. д. В более тяжелых случаях нарушение проницаемости сосудов выражено столь значительно, что это приводит к кровоизлияниям во внутренние органы (легкие, поч­ки, сердечную мышцу, под эндокард и т. д.), сначала точечным, а затем и обширным. Происходит сгущение крови, при котором возрастает ее вяз­кость. Смерть наступает на высоте сгущения крови.

Уже в ближайшие часы после воздействия в крови увеличивается ко­личество эритроцитов, гемоглобина; через 4—6 ч эти изменения достига­ют максимума. В начальном периоде интоксикации развивается лейко­цитоз, который в тяжелых случаях перерастает в лейкопению. Развитие выраженной лейкопении, лимфо- и эозинопении рассматривается как плохой прогностический признак. Выраженность изменений со стороны системы крови зависит от дозы вещества, а также от интенсивности вос­палительного процесса на месте его аппликации.

При затяжном течении отравления снижение массы тела, потеря ап­петита и адинамия свидетельствуют о нарушении обмена веществ. Осо­бенно страдает углеводный обмен (отмечается повышение содержания сахара, пировиноградной и молочной кислот в крови). В результате на­копления кислых продуктов в крови наблюдается сдвиг кислотно-основ­ного состояния. Развивается метаболический ацидоз. Признаком нару­шения жирового обмена является гипохолестеринемия. В более позднем периоде интоксикации (3—10-е сут) на первый план выступают изменения белкового обмена (в моче повышается содержание продуктов распада белка — общего азота, азота мочевины, и т. д.).

При вскрытии погибших животных выявляются дегенеративные из­менения паренхиматозных органов (жировая дистрофия, некроз парен­химы, перерождение эпителия). Отчетливо выражены дистрофические изменения нервных клеток различных отделов ЦНС (вегетативных ганг­лиев и т. д.) в виде вакуолизации, сморщивания, пикноза ядер, кариорек-сиса.

Таким образом, для резорбтивного действия люизита характерными являются сосудистые расстройства, а также дегенеративные изменения со стороны клеток нервной системы и паренхиматозных органов.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 8

Высокотоксичным представителем группы ароматических арсинов явля­ется фенилдихлорарсин. Это соединение также рассматривали как воз­можное ОВ кожно-нарывного действия. Поскольку в структуру токси­канта входит арильный радикал, вещество, помимо свойств, присущих всем галогенированным органическим производным трехвалентного мы­шьяка (люизиту), обладает сильно выраженным раздражающим действи­ем.

Механизм токсического действия соединений мышьяка

В 1925 г. Фегтлиным было высказано предположение, что токсичес­кое действие соединений трехвалентного мышьяка, сопровождающееся значительным нарушением функций и гибелью клеток различных орга­нов и тканей, обусловлено их взаимодействием с сульфгидрильными группами биологических молекул. Предпосылкой к этому послужили данные о способности арсенитов взаимодействовать с сероводородом с образованием сульфидов мышьяка:

По мнению автора, основным объектом токсического воздействия в клетках является глутатион, сульфгидрильные группы которого в процес­се реакции блокируются:

Было установлено, что предварительное введение глутатиона защи­щает лабораторных животных от арсеноксида и арсенита натрия, вводи­мых в смертельных дозах.

Теоретически отравление мышьяком может сопровождаться наруше­нием активности всех SH-содержащих молекул (см. выше). Однако в на­чале 40-х гг. XX в. Томпсоном и соавторами было показано, что реакции соединений мышьяка, и в частности люизита, с тиоловыми группами протекают двояко. При взаимодействии арсенитов с монотиолами обра­зуются малопрочные, легко гидролизуемые соединения. При взаимодей­ствии же токсикантов с молекулами, в которых две тиоловые группы рас­положены рядом (в положении 1,2 либо — 1,3), образуются прочные, не поддающиеся гидролизу циклические соединения:

Была высказана гипотеза (Питере, Томпсон, Стокен), согласно кото­рой токсическое действие различных соединений мышьяка обусловлено главным образом их реакцией с молекулами со смежным расположением SH-групп, в результате чего образуются прочные циклические структуры.

В частности, токсиканты активно связываются с липоевой кислотой (рис. 38), являющейся коэнзимом пируватоксидазного ферментного ком­плекса, регулирующего превращение пировиноградной кислоты (конеч­ного продукта гликолиза) в активную форму уксусной кислоты (ацетил КоА), утилизируемую циклом Кребса. В результате в крови и тканях накапливается пировиноградная кислота (ацидоз), блокируется цикл три-карбоновых кислот — нарушаются процессы энергетического обмена в клетках различных органов (в этой связи люизит можно рассматривать и как вещество общеядовитого действия).

СН2СН2СН(СН2)4СООН SH SH Рис. 38. Липоевая кислота

Взаимодействием мышьяксодержащих веществ с сульфгидрильными группами можно объяснить и их гипотензивное действие. Так, полагают, что рецепторные структуры для оксида азота, активного регулятора сосу­дистого тонуса, включают в качестве функционально-значимых элемен­тов SH-группы. В основе расслабляющего действия N0 на сосуды лежит его способность образовывать с SH-группами нестабильные нитрозотио-лы (период полусуществования комплекса в организме — около 3—5 с):

Падение артериального давления, наблюдаемое при отравлении сое­динениями мышьяка, может быть объяснено образованием относительно стойких связей As с SH-группами сосудистых рецепторов оксида азота.

Широкое представительство в организме лигандов с высоким сродст­вом к мышьяку и их большая роль в поддержании гомеостаза лежат в основе способности токсикантов действовать практически на все органы и системы, инициируя различные формы токсических процессов. Этим, в частности, можно объяснить развитие не только тяжелых воспалитель­но-некротических изменений в покровных тканях при непосредственном действии на них токсикантов, но и целого ряда функциональных наруше­ний со стороны ЦНС, печени, миокарда и т. д., наблюдаемых при отрав­лении соединениями мышьяка.

Способностью взаимодействовать с сульфгидрильными группами мо­лекул и молекулярных комплексов, регулирующих процессы, лежащие в основе клеточного деления, можно объяснить и канцерогенное действие соединений мышьяка (по данным МАИР — мышьяк канцероген для че­ловека).

Мероприятия медицинской защиты

Специальные санитарно-гигиенические мероприятия:

• использование индивидуальных технических средств защиты (средства защиты кожи; средства защиты органов дыхания) в зоне химического заражения;

• участие медицинской службы в проведении химической развед­ки в районе расположения войск, проведение экспертизы воды и продовольствия на зараженность ОВТВ;

• запрет на использование воды и продовольствия из непроверен­ных источников;

• обучение личного состава правилам поведения на зараженной местности.

Специальные профилактические медицинские мероприятия:

•проведение частичной санитарной обработки (использование ИПП) в зоне химического заражения;

• проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.

Специальные лечебные мероприятия:

•применение антидотов и средств патогенетической и симптома­тической терапии состояний, угрожающих жизни, здоровью, дееспособности пораженного, в ходе оказания первой (само- и взаимопомощь), доврачебной и первой врачебной (элементы) помощи пострадавшим;

• подготовка и проведение эвакуации.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 9

Средства, применяемые при отравлениях мышьяксодержащими ве­ществами, представлены препаратами трех групп:

1. Препараты для обезвреживания мышьяка, не всосавшегося во внутренние среды организма, на поверхности кожи, слизистой оболочке глаз, в просвете желудочно-кишечного тракта.

2. Лечебные антидоты.

3. Средства симптоматической и патогенетической помощи по­страдавшим.

Средства для обезвреживания мышьяка на покровных тканях. При по­падании капельно-жидкого О В на кожу или одежду в первые 5—10 мин производят частичную санитарную обработку с помощью содержимого индивидуального противохимического пакета. Помимо содержимого ИПП, для обезвреживания мышьяка на поверхности кожи могут быть ис­пользованы вещества, которые окисляют, хлорируют или приводят к гид­ролизу его соединения. Дегазирующие свойства окислителей основаны на превращении трехвалентного мышьяка, входящего в состав люизита, в пятивалентный и снижении в связи с этим токсичности образующихся соединений. В качестве окислителей могут быть использованы растворы 5% монохлорамина, 5% калия марганцовокислого в 5% уксусной кисло­те, 5-10% йода, 40% гидропирита (перекис мочевины).

Для ослабления поражений кожи люизитом в виде мази применяют комплексообразователи из группы дитиолов: 3,5% или 5% мазь 2,3-ди-меркаптопропанола под названием «дикаптол» или 30% мазь унитиола.

При поражении глаз люизитом необходимо промыть глаз водой либо 0,25% раствором хлорамина и ввести в конъюнктивальный мешок на 1-2 мин 30% мазь унитиола (затем глаз опять промыть).

При поражении слизистых оболочек дыхательных путей следует прове­сти обмывание слизистой оболочки растворами 0,05% К.МПО4, 0,25—1% хлорамина.

При попадании соединений мышьяка с зараженной водой или пищей обильно промывают желудок и пищевод раствором калия марганцово­кислого (0,05% раствор). После этого следует назначить внутрь 5 мл 5% раствора унитиола.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 10

2,3,7,8-ТХДД представляет собой кристаллическое вещество с молеку­лярной массой около 320 дальтон; температура кипения: 305° С. Хорошо растворяется в органических растворителях, особенно в о-хлорбензоле. В воде не растворим. Отличается высокой липофильностью. Способность к испарению крайне низка. Вещество отличается необычайной стойко­стью, накапливается в объектах внешней среды, организмах животных, передается по пищевым цепям. Во внешней среде диоксины абсорбиру­ются на органических, пылевых и аэрозольных частицах, разносятся воз­душными потоками, поступают в водные экосистемы. В донных отложе­ниях стоячих водоемов яд может сохраняться десятки лет. В почве возможна медленная микробная деградация диоксина. Период полуэли­минации из почвы составляет 1 — 1,5 года. По другим данным, этот срок значительно больше (около 10 лет), что определяется конкретными кли-мато-географическими условиями и характером почвы. Яд отнесен к чис­лу «суперэкотоксикантов».

При оценке токсичности 2,3,7,8-тетрахлордибензо-пара-диоксина выявляются значительные межвидовые различия.

Токсичность диоксина для разных видов животных при внутрибрюшинном введении

Вид животного LD5o, мкг/кг
Морская свинка 0,6-2,5
Крыса 22^5
Обезьяна менее 70
Кролик 115-275
Мышь 114-280
Собака менее 300
Лягушка-бык менее 500
Хомяк

По существующим оценкам, токсичность ТХДД для человека сопо­ставима с таковой для приматов.

Токсикокинетика

Основные пути поступления диоксинов в организм — с зараженной пищей и ингаляционно в форме аэрозоля. После поступления в кровь ве­щества распределяются в органах и тканях. Значительная часть токсикантов кумулируется в богатых липидами тканях и прежде всего в жировой. Даже через 15 лет после окончания химической войны содержание ТХДД вжировой ткани жителей ряда районов Вьетнама было в 3—4 раза выше, чем у жителей Европы и США.

Вещество медленно метаболизирует в организме, в основном в печени и почках, при участии цитохром-Р-450-зависимых оксидаз. 2,3,7,8-тет-рахлордибензо-пара-диоксин не только сам разрушается при участии ок­сидаз смешанной функции, но и существенно активирует метаболизм других ксенобиотиков. Диоксин — один из самых мощных индукторов микросомальных ферментов. С этим свойством вещества связывают ме­ханизм его токсического действия на организм. Достаточно точно уста­новлен период полувыведения 2,3,7,8 — ТХДД. У человека он составляет 2120 дней (по другим данным — 5—7 лет); у крысы — 30 дней; морской свинки — 30—94; обезьяны — 455.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 11

Полихлорированные бифенилы (ПХБ) это класс синтетических хлорсодержаших полициклических соединений

Хлор может замещать атомы водорода при любом атоме углерода. На рис. 41 представлена структура 3,5,3*,5*-тетрахлорбифенила. Теоретиче­ски возможно существование 209 изомеров вещества.

ПХБ при остром воздействии обладают сравнительно низкой токсич­ностью. Сравнительное изучение изомеров показывает, что хлорзаме-шенные в мета- и пара-положении более токсичны.

Средняя смертельная доза колеблется в интервале от 0,5 до 11,3 г/кг в зависимости от строения изомера и вида экспериментального животного.

ПХБ широко использовались при производстве электрооборудова­ния, в частности трансформаторов и усилителей, а также в качестве на­полнителей при производстве красителей и пестицидов, смазочных мате­риалов для турбин, для производства гидравлических систем, текстиля, бумаги, флуоресцентных ламп, телевизионных приемников и др. Такое широкое использование ПХБ было обусловлено их высокой термостой­костью, химической стабильностью, диэлектрическими свойствами, что позволяло применять вещества для производства изделий, в которых применение других охлаждающих агентов было сопряжено с высокой опасностью взрывов или воспламенения.

В 70-е гг. XX в. в лабораторных и натурных исследованиях была уста­новлена высокая опасность этих веществ, обусловленная способностью персистировать в окружающей среде и токсичностью для лабораторных животных. В 1979 г. производство веществ в США было запрещено.

Токсикокинетика

В организм ПХБ могут проникать через кожу, легкие и желудочно-кишечный тракт. На производстве основной способ поступления ве­ществ — через кожные покровы, в то время как в повседневной жизни большее количество веществ поступает в организм с контаминированной пищей.

Попав в кровь, вещества быстро накапливаются в печени и мышцах, откуда затем перераспредляются в жировую ткань. Коэффициент распре­деления веществ в мозге : печени : жире составляет в среднем — 1 : 3,5 : 81.

Среднее содержание ПХБ в сыворотке крови людей, проживающих в «чистых» регионах, составляет примерно 7 частей на миллиард, у лиц, профессионально контактирующих с ПХБ, — может достигать 3300.

ПХБ метаболизируют в основном в печени с образованием гидрокси-лированных фенольных соединений, через промежуточный продукт — ареноксид. Возможно дегалогенирование соединений. Скорость метабо­лизма зависит от структуры изомера и вида экспериментального живот­ного, на котором изучается процесс. Собаки и грызуны метаболизируют ПХБ с большей скоростью, чем приматы. Основные пути выведения: с желчью в содержимое кишечника и через почки с мочой.

Как и диоксины, ПХБ являются индукторами Р-450-зависимых окси-даз смешанной функции в печени, легких и тонком кишечнике. Их введе­ние в организм сопровождается усилением метаболизма других ксенобио­тиков. Индукторная способность различных изомеров ПХБ неодинакова.

Степень депонирования веществ в тканях зависит от строения изоме­ров, пути и продолжительности проникновения их в организм, а также от пола, возраста, привычек человека (приема алкоголя). Период полувыве­дения из организма колеблется от 6—7 до 33—34 мес.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 12

Проявления интоксикации ПХБ чрезвычайно напоминают эффекты, развивающиеся при отравлении диоксинами.

В эксперименте на животных подострые и хронические воздействия приводят к развитию многообразных эффектов: прогрессивному паде­нию веса, хлоракне, выпадению волос, отекам, инволюции тимуса и лим-фоидной ткани, гепатомегалии, угнетению костного мозга, нарушению репродуктивных функций. У животных, подвергшихся воздействию ПХБ в пренатальном, неонатальном и постнатальном периоде, развиваются неврологические знаки, проявляющиеся главным образом нарушением поведения: склонностью к стереотипным «манежным» движениям, ги-пер- или гипоактивностью. У взрослых животных нейротоксические свойства веществ не выявляются.

В действующих дозах вещества вызывают понижение веса иммуноком-петентных органов, включая селезенку, тимус, лимфатические узлы. Фун­кциональное состояние иммунной системы не однозначно: при действии высоких доз ПХБ отмечается иммуносупрессивное (снижение уровня ан­тител, особенно IgA, IgM), а малых — активирующее (повышение уровня IgG) состояние. Имеются данные об увеличении частоты инфекционных заболеваний среди животных, подвергшихся воздействию ПХБ.

Получены многочисленные данные, свидетельствующие о мутаген­ном и канцерогенном действии ПХБ.

Токсический процесс, вызываемый ПХБ у человека, изучен недоста­точно. Наиболее достоверным эффектом является патология кожных по­кровов, и в частности, хлоракне (см. 11.3.1. «Диоксины»). В некоторых исследованиях выявлена связь между действием ПХБ и развитием таких общих неблагоприятных эффектов, как частая головная боль, утомляе­мость, нервозность.

Механизм токсического действия

Не нашли то, что искали? Воспользуйтесь поиском:

Page 13

Токсическое действие полигалогенированных ароматических углеводо­родов в настоящее время во многом связывают с их чрезвычайно высокой активностью как индукторов ферментов гладкого эндоплазматического ретикулума печени, почек, легких, кожи и других органов (микросомаль-ных ферментов), участвующих в метаболизме чужеродных соединений и некоторых эндогенных веществ. 2,3,7,8-Тетрахлордибензо-пара-диоксин (ТХДД) является самым сильным из известных индукторов, в частности, монооксигеназ. Его эффективная доза составляет 1 мкг/кг массы (в по­давляющем большинстве случаев другие ксенобиотики проявляют свой­ства индукторов данной группы энзимов, действуя в значительно больших дозах — более 10 мг/кг).

Индукция активности предполагает синтез дополнительного количест­ва того или иного энзима (белка) в органах и тканях de novo. Поскольку блокаторы синтеза ДНК (гидроксимочевина) не препятствуют индукции микросомальных энзимов диоксином и диоксиноподобными веществами, а ингибиторы синтеза РНК (актиномицин Д) и белка (пуромицин, цикло-гексимид) блокируют процесс, делается вывод, что феномен индукции ре­ализуется на уровне транскрипции генетической информации клетки.

В соответствии с существующими представлениями, механизм дейст­вия ПАУ, и в частности ТХДД, состоит во взаимодействии вещества с ци-тозольными белками-регуляторами активности генов, отвечающих за синтез микросомальных ферментов. В норме, при поступлении ксеноби­отиков в организм, а затем и в клетки (печени, почек и т. д.), они образу­ют в цитоплазме комплексы с белками-регуляторами, которые мигриру­ют в ядро клетки, где, взаимодействуя с ДНК, вызывают дерепрессию ре-гуляторных генов и тем самым активируют синтез того или иного энзима. В случае ТХДД такой рецепторный цитоплазматический протеин-регуля­тор идентифицирован. В частности, установлено, что синтез гидроксила-зы ароматических улеводородов (aryl hydrocarbon hydroxylase) в гепатоци-тах мышей, чувствительных к ароматическим углеводородам, регулирует­ся локусом единственного доминантного гена (обозначается — Ah) и мо­жет быть усилен при проникновении в ядро клетки образующегося в ци­топлазме комплекса ТХДД с определенным протеином. Этот цитозоль-ный белок-регулятор гена получил название Ah-рецепторный протеин.

Индукция, вызываемая полициклическими углеводородами, не со­провождается выраженной пролиферацией гладкого эндоплазматическо­го ретикулума, но существенно возрастает активность Р-450-зависимых монооксигеназ, УДФГ-трансферазы, гидроксилаз и других энзимов.

Поскольку диоксин и диоксиноподобные вещества длительное время сохраняются в организме, наблюдается стойкая индукция микросомальных энзимов. При этом существенно изменяется не только скорость, но и харак­тер биопревращений разнообразных чужеродных веществ, поступающих в организм (ксенобиотиков) и целого ряда эндогенных (прежде всего липо-фильных) биологически активных веществ, метаболизируемых при участии этой группы энзимов. В частности, существенно модифицируется метабо­лизм стероидов, порфиринов и каротиноидов, к числу которых относятся многие гормоны, витамины, коферменты и структурные элементы клеток.

Стойкая активация диоксином биопревращения некоторых ксеноби­отиков, поступающих в организм с водой, продовольствием, вдыхаемым воздухом, может приводить к усиленному образованию реактивных про­межуточных метаболитов и вторичному поражению ими различных орга­нов и тканей. Модификация обмена стероидов (андрогенов, эстрогенов, анаболических стероидов, кортикосероидов, желчных кислот), порфири­нов (простетические группы гемопротеинов, цитохромы, витамин В12 и т. д.), каротиноидов (витамины группы «А»), как известно, сопровожда­ется выраженным нарушением обмена веществ. И тот и другой эффект, в сочетании, проявляются клинической картиной вялотекущего токсичес­кого процесса, описание которого дано выше.

Не нашли то, что искали? Воспользуйтесь поиском:


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.