Домой Регистрация
Приветствуем вас, Гость



Форма входа

Население


Вступайте в нашу группу Вконтакте! :)




ПОИСК


Опросник
Используете ли вы афоризмы и цитаты в своей речи?
Проголосовало 514 человек


Авр что это такое в электрике


АВР: что это такое, расшифровка, устройство, варианты схем АВР

Нельзя гарантировать бесперебойную работу энергосистемы, поскольку всегда существует вероятность воздействия на нее техногенных или природных внешних факторов. Именно поэтому токоприемники, относящиеся к первой и второй категории надежности, положено подключать к двум или более независимым источникам энергоснабжения. Для переключения нагрузок между основными и резервными питаниями используются системы АВР. Подробная информация о них приведена ниже.

Что такое АВР и его назначение?

В подавляющем большинстве случаев такие системы относятся к электрощитовым вводно-коммутационным распредустройствам. Их основная цель — оперативное подключение нагрузки на резервный ввод, в случае возникновения проблем с энергоснабжением потребителя от основного источника питания. Чтобы обеспечить автоматическое переключение на работу в аварийном режиме, система должна отслеживать напряжение питающих вводов и ток нагрузки.

Типовой щит АВР

Расшифровка аббревиатуры АВР

Данное сокращение это первые буквы полного названия системы – Автоматический Ввод Резерва, как нельзя лучше объясняющее ее назначение. Иногда можно услышать расшифровку «Автоматическое Включение Резерва», такое определение не совсем корректное, поскольку под ним подразумевается запуск генератора в качестве резервного источника, что является частным случаем.

Классификация

Вне зависимости от исполнения, блоки, шкафы или АВР принято классифицировать по следующим характеристикам:

Требования к АВР

В число основных требований к системам аварийного восстановления электроснабжения входит:

Устройство АВР

Существует два основных типа исполнения, различающиеся приоритетом ввода:

  1. Одностороннее. В таких АВР один ввод играет роль рабочего, то есть используется, пока в линии не возникнут проблемы. Второй – является резервным, и подключается, когда в этом возникает необходимость.
  2. Двухстороннее. В этом случае нет разделения на рабочую и резервную секцию, поскольку оба ввода имеют одинаковый приоритет.

В первом случае большинство систем имеют функцию, позволяющую переключиться на рабочий режим питания, как только в главном вводе произойдет восстановление напряжения. Двухсторонние АВР в подобной функции не нуждаются, поскольку не имеет значения от какой линии запитывается нагрузка.

Примеры схем двухсторонней и односторонней реализации будут приведены ниже, в отдельном разделе.

Принцип работы автоматического ввода резерва

Вне зависимости от варианта исполнения АВР в основу работы системы заложено отслеживание параметров сети. Для этой цели могут использоваться как реле контроля напряжения, так и микропроцессорные блоки управления, но принцип работы при этом остается неизменным. Рассмотрим его на примере самой простой схеме АВР для бесперебойного электроснабжения однофазного потребителя.

Рис. 4. Простая схема однофазной АВР

Обозначения:

В штатном режиме работы напряжение подается на индикаторную лампу и катушку реле К1. В результате нормально-замкнутый и нормально-разомкнутый контакты меняют свое положение и на нагрузку подается питание с линии А (основной). Как только напряжение в на входе А пропадает, лампочка гаснет, катушка реле перестает насыщаться, и положение контактов возвращается в исходное (так, как показано на рисунке). Эти действия приводят к включению нагрузки в линию В.

Как только на основном вводе восстанавливается напряжение, реле К1 производит перекоммутацию на источник А. Исходя из принципа работы, данную схему можно отнести к одностороннему исполнению с наличием возвратной функции.

Представленная на рисунке 4 схема сильно упрощена, для лучшего понимания происходящих в ней процессов, не рекомендуем брать ее за основу для контроллера АВР.

Варианты схем для реализации АВР с описанием

Приведем несколько рабочих примеров, которые можно успешно применить при создании щита автоматического запуска. Начнем с простых схем для бесперебойной системы электроснабжения жилого дома.

Простые

Ниже представлен вариант схемы АВР, переключающей подачу электричества в дом с основной линии на генератор. В отличие от приведенного выше примера, здесь предусмотрена защита от короткого замыкания, а также электрическая и механическая блокировка, исключающая одновременную работу от двух вводов.

Схема АВР для дома

Обозначения:

После переводов автоматов АВ1 и АВ2 алгоритм работы блока АВР будет следующим:

  1. Штатный режим (питание от основной линии). Катушка К3 насыщается и реле напряжения срабатывает, замыкая контакт К3.2 и размыкая К3.1. В результате напряжение поступает на катушку пускателя К2, что приводит к замыканию К2.2 и К2.3 и размыканию К2.1. Последний играет роль электрической блокировки, не допускающей подачи напряжения на катушку К1.
  2. Аварийный режим. Как только напряжение в главной линии исчезает или «падает» ниже допустимого предела, катушка К3 перестает насыщаться и контакты реле принимают исходную позицию (так, как показано на схеме). В результате на катушку К1 начинает поступать напряжение, что приводит к изменению положения контактов К1.1 и К1.2. Первый играет роль электрической защиты, не допуская подачи напряжения на катушку К2, второй снимает блокировку подачи питания на нагрузку.
  3. Чтобы работала механическая блокировка (на схеме отображена в виде перевернутого треугольника) необходимо использовать реверсивный пускатель, где ее наличие предполагается конструкцией электромеханического прибора.

Теперь рассмотрим два варианта простых АВР для трехфазного напряжения. В одном из них энергоснабжение будет организовано по односторонней схеме, во втором применено двухстороннее исполнение.

Рисунок 6. Пример односторонней (В) и двухсторонней (А) реализации простого трехфазного АВР

Обозначения:

Рассмотрим схему «А», у которой два равноправных ввода. Чтобы не допустить одновременное подключение линий применяется принцип взаимной блокировки, реализованный на контакторах МП1 и МП2. От какой линии будет питаться нагрузка, определяется очередностью включения автоматов АВ1 и АВ2. Если первым включается АВ1, то срабатывает пускатель МП1, при этом разрывается контакт мп1.2, блокируя поступление напряжение на катушку МП2, а также замыкается контактная группа мп1.1, обеспечивающая подключение источника 1 к нагрузке.

При отключении источника 1 контакты пускателя ПМ1 возвращаются в исходное положение, что приводит в действие контактор ПМ2, блокирующий катушку первого пускателя и включающий подачу питания от источника 2. При этом нагрузка будет оставаться подключенной к этому вводу, даже если работоспособность источника 1 пришла в норму. Переключение источников можно делать в ручном режиме манипулируя выключателями АВ1 и АВ2.

В тех случаях, когда требуется одностороння реализация, применяется схема «В». Ее отличие заключается в том, что в цепь управления добавлено реле напряжения (РН), возвращающее подключение на основной источник 1, при восстановлении его работы. В этом случае размыкается контакт рн2, отключающий пускатель МП2 и замыкается рн1, позволяя включиться МП1.

Промышленные системы

Принцип работы промышленных систем энергообеспечения остается неизменным. Приведем в качестве примера схему типового шкафа АВР.

Схема типового промышленного шкафа АВР

Обозначения:

Приведенная схема АВР практически идентична, той, что была представлена на рисунке 6 (А). Единственное отличие заключается в том, что в последнем случае используется специальное реле контролирующее состояние каждой фазы. Если «пропадет» одна из них или произойдет перекос напряжений, то реле переключит нагрузку на другую линию, и восстановит исходный режим при стабилизации основного источника.

АВР в высоковольтных цепях

В электрических сетях с классом напряжения более 1кВ реализация АВР более сложная, но принцип работы системы практически не меняется. Ниже в качестве примера приведен упрощенный вариант схемы понижающей ТП 110,0/10,0 киловольт.

Упрощенная схема ТП 110/10 кВ

Из приведенной схемы видно, в ней нет резервных трансформаторов. Это говорит о том, что каждая из шин (Ш1 и Ш2) подключена к своему питающему трансформатору (T1, T2), каждый из которых может на определенное время стать резервным, приняв на себя дополнительную нагрузку. В штатном режиме секционный выключатель СВ10 разомкнут. АВР контролирует работу ТП через ТН1 Ш и ТН2 Ш.

Когда перестает поступать питание на Ш1, АВР выполняет отключение выключателя В10Т1 и производит включение секционного выключателя СВ10. В результате такого действия обе секции работают от одного трансформатора. При восстановлении источника система ввод резерва перекоммутирует систему в исходное состояние.

Микропроцессорные бесконтакторные системы

Завершая тему нельзя не упомянуть о АВР с микропроцессорными блоками управления. В таких устройствах, как правило, используются полупроводниковые коммутаторы, которые более надежны, чем аппараты, выполняющие переключение с помощью контакторов.

Электронный блок АВР

Основные преимущества бесконтакторных АВР несложно перечислить:

К числу недостатков следует отнести сложный ремонт электронных АВР. Самостоятельно реализовать схему устройства также не просто, для этого потребуются знания электротехники, электроники и программирования.

Для чего нужен автоматический ввод резерва и как работает АВР?

Даже современная система электроснабжения не всегда отличается абсолютной надёжностью. В случаях возникновения аварийных ситуаций без энергии могут остаться потребители, у которых длительный перерыв в электроснабжении может привести к большим материальным потерям, и даже к угрозе жизни людей. Поэтому как в быту, так и на производстве имеет смысл организовать питание от двух источников электроэнергии, с переводом питания от одного. Такая система называется автоматический ввод резерва, сокращённо АВР. Её работа заключается в полностью автоматическом подключении цепей электрооборудования потребителей от резервного источника питания в случае отключения основного. В этой статье мы подробно рассмотрим назначение и принцип работы АВР различных видов.

Назначение АВР

Назначение данной системы в электрике схоже с организацией бесперебойного питания. Главная задача автоматического ввода резервного питания — это быстрое восстановление электроснабжения без участия в этом процессе человека. На больших подстанциях всегда имеется два ввода на две, разделённые секционным выключателем, секции распределительного устройства, работающие автономно друг от друга. Согласно ПУЭ (правила устройства электроустановок) автоматическое подключение резервного питания и снабжение на 2 ввода является обязательной мерой обеспечения электричеством потребителей первой категории.

Простой пример необходимости данной системы можно привести относительно освещения какого-то важного охраняемого участка. То есть при отключении основного ввода система сама включит питание от резервного источника, при этом данный важный участок останется осветлен. Максимум что может возникнуть — это непродолжительное прекращение питания, которое визуально даже отследить тяжело. Это зависит от скорости срабатывания АВР, время включения резерва должно составлять порядка 0,3–0,8 секунд.

Как работает автоматический ввод резервного питания

Принцип действия АВР основан на контроле напряжения в цепи. Это может осуществляться с помощью любых реле напряжения либо цифровых логических блоков защиты. Однако принцип работы всё рано остаётся неизменным. Рассмотрим его на самом простом примере.

Это однолинейная схема, на которой видно, что контроль напряжения осуществляется контактором КМ. Оба автомата QS1 и QS2 должны быть включены, при этом катушка КМ получит питание и будет втянута, а соответственно её замыкающий контакт в цепи основного ввода тоже замкнут и размыкающий контакт в цепи резервного ввода разомкнут. Тем самым электроснабжение потребителя осуществляется от основной сети и светятся соответствующие лампы. В случае неисправности питания по линии L12 и снижения напряжения до величины, когда контактор КМ отключится, произойдёт размыкание замыкающего контакта в основной линии и одновременно с этим контакт в цепи резервного питания линии L22 перейдёт в замкнутое состояние, тем самым подав напряжение к потребителю от резервного источника. Обратная ситуация произойдёт при возобновлении основного электроснабжения по линии L12.

На видео ниже наглядно рассмотрен принцип работы АВР в сетях 6 кВ:

Требования к системе

Основными требованиями, предъявляемыми к системам АВР являются:

Естественно, что простейшая схема на контакторах не сможет реализовать все предъявляемые требования к системе АВР. Для этого в современной электронике применяются логические системы, подающие сигнал на включение резервного источника питания только при соблюдении всех правил и блокировок. Также для дополнительной надёжности даже применяется механическая блокировка.

Классификация АВР и варианты реализации

Осуществляться резервное питание и его автоматический ввод может от отдельного генератора, аккумуляторной батареи либо отдельной линии.

В свою очередь все системы АВР по своему действию делятся на:

  1. Односторонние. Одна секция или же ввод является рабочим (основным), а второй резервный. В случае исчезновения рабочего напряжения включается резерв.
  2. Двухсторонние. Когда существуют две раздельно питающиеся секции и соответственно две линии являются рабочими, и при отключении одной любой из них, другая является резервной.

Также АВР может быть с восстановлением питания по нормальной схеме и без него. Во втором случае происходит полное погашение нерабочей сети и даже при повторном возобновлении питания схема не будет работать как прежде по двум линиям.

Особенности работы с бытовыми генераторами

Для того чтобы организовать автоматический ввод резерва в доме можно в качестве источника резервного питания использовать генератор. Он даст возможность длительное время обеспечить напряжением целый дом, его нагрузка зависит от мощности самого генератора. Вот схема подключения:

Введение генератора вместо сетевого напряжения можно использовать в однофазной и трёхфазной сети, в зависимости от его модели. Однако для того чтобы этот процесс был полностью автоматизирован необходимо, чтобы генератор был оснащён стартером, а также понадобится специальный блок, состоящий из набора коммутационных устройств, включающих стартер только на время запуска и отключающих при возобновлении подачи сетевого напряжения, выглядит он вот так:

Такой блок для генератора совместим с любым типом двигателя и имеет три положения: «Стоп», «Включен, «Запуск». Правда, в зимнее время необходим прогрев двигателя внутреннего сгорания, но этот блок можно запрограммировать, учитывая и эту особенность. Крепится он на дин рейку в распределительном щитке.

На видео доходчиво объясняется схема, по которой можно сделать автоматический ввод резерва для генератора своими руками:

АВР на аккумуляторах

С развитием преобразователей, трансформирующих постоянный ток в переменный, появляется возможность использовать, например, автомобильный аккумулятор в качестве источника резервного питания. Помимо аккумулятора, понадобится приобрести современный автомобильный инвертор, преобразующий 12 Вольт постоянного напряжения в 220 Вольт переменного.

Правда, этот источник вряд ли можно использовать для силовой нагрузки, но цепи освещения он может легко обеспечить стабильным напряжением на время непродолжительной аварии на линии. При этом длительность работы будет зависеть от мощности потребителей и емкости аккумуляторов.

Для увеличения ёмкости можно параллельно подключить несколько аккумуляторных батарей. Схема соединения самой системы АВР может быть реализована с помощью пускателя.

Пускатель включается в основную цепь, а при проблемах в сети его подвижная часть отпадает, тем самым его размыкающий блок-контакт, введённый в цепь аккумулятора, запускает систему автоматического электроснабжения. Этот способ менее затратный, нежели генераторный, но не способен выдавать длительное время ток для мощных бытовых приборов.

Применение логического контроллера

Для двух сетей электроснабжения трехфазным питанием применяются уже готовые блоки АВР с применением логического цифрового контролера, который может учитывать множество параметров, требуемых для создания идеальной системы. На нём имеется вся нужная маркировка и инструкция по управлению и подключению.

Правда, перед тем как подключить модуль и приобрести его, нужно задуматься, имеется ли резервный источник питания с более надёжным электроснабжением. Так как нет смысла подключать его к одной и той же системе трёхфазной сети, то есть питающейся от одного трансформатора 6/0,4 кВ.

Организация АВР в высоковольтных цепях

Для того чтобы выполнить организацию автоматического резервирования в цепях с напряжением больше 1000 Вольт, в качестве элемента, измеряющего и контролирующего сетевую энергию, служит специальный трансформатор напряжения, на вторичной обмотке которого в нормальном режиме работы 100 Вольт. Для связи его с системой АВР используется реле минимального напряжения или же реле контроля фаз. Оно реагирует не только на понижение величины сетевого напряжения, но и на исчезновение хотя бы одной фазы, например, при обрыве воздушной линии ВЛ. Здесь уже обязательно выполнение всех требований, касающихся правильному вводу АВР, а иногда даже при системе с восстановлением устанавливается выдержка времени на возврат в исходную первоначальную конфигурацию.

Также важно отметить, что в высоковольтных сетях схема автоматики АВР реализуется на электромеханических реле старого образца или современных многофункциональных микропроцессорных терминалах защиты, которые выполняют несколько функций, в том числе и АВР.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое автоматический ввод резерва, какие бывают схемы АВР и какой принцип работы у данной системы электроснабжения. Надеемся, предоставленная информация и видео уроки были для вас полезными!

Наверняка вы не знаете:

Автоматический ввод резерва. Типы и характеристики

Автоматический ввод резерва — способ обеспечения резервным электроснабжением нагрузок, подключенных к системе электроснабжения, имеющей не менее двух питающих вводов и направленный на повышение надежности системы электроснабжения. Заключается в автоматическом подключении к нагрузкам резервных источников питания в случае потери основного.

В наше время перебои с электроснабжением не редкость. И хотя в нашей стране достаточно электроэнергии, но проблема бесперебойного электроснабжения остается. Решить ее поможет установка дополнительных источников электроэнергии, таких как генератор, аккумулятор, а так же иные альтернативные источники электропитания.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.

II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.

III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьезным последствиям.Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет Автоматический ввод резерва.

Автоматический ввод резерва может подключить отдельный источник электроэнергии (генератор, аккумуляторная батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании систем гарантированного электроснабжения, предназначенных для обеспечения работы электроприемников I категории и особой группы первой категории надежности, возникает задача выбора типа устройства автоматического ввода резерва (АВР).

   Автоматический ввод резерва

Автоматический ввод резерва (АВР) — метод защиты, предназначенный для бесперебойной работы сети электроснабжения. Реализован с помощью автоматического подключения к сети других источников электропитания в случае аварии основного источника электроснабжения.

Основные требования, предъявляемые к устройствам при построении системы гарантированного электроснабжения

  1. Как известно (см. ПУЭ), электроприемники первой категории надежности должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, а для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого источника.
  2. В обоих случаях в качестве одного из резервирующих источников питания может использоваться автоматизированная дизель-электрическая электростанция, что требуется учитывать при выборе конкретной схемы АВР.
  3. При использовании АВР должны быть приняты меры, исключающие возможность замыкания между собой двух независимых источников питания друг на друга, причем в дополнение к требованиям ПУЭ службы энергонадзора, как правило, требуют наличия не только электрической, но и механической блокировки коммутирующих элементов.
  4. Максимальное время переключения резерва зависит от характеристик потребителей электроэнергии, но при наличии в системе источников бесперебойного питания (ИБП) не имеет определяющего значения. Для исключения ложных срабатываний при переключениях АВР на стороне высокого напряжения должна быть предусмотрена возможность регулировки задержки переключения при неисправностях одной из сетей.
  5. Важное значение имеет наличие регулировки порогов срабатывания АВР в диапазоне контролируемого напряжения для каждого ввода. Так, например, в случае подключения к выходу АВР ИБП согласование между собой диапазонов входных напряжений обоих устройств позволяет обеспечить своевременное переключение на резервную сеть при отклонении напряжений основной питающей сети за заданные значения и тем самым исключить длительную работу ИБП на батареях при исправной резервной сети.
  6. Желательно наличие индикации состояния и возможности ручного управления АВР.

Преимущества и недостатки различных типов АВР с позиций перечисленных требований

Тиристорные (электронные) АВР

Статический переключатель нагрузки — (англ.: LTM — Load Transfer module (модуль переключения нагрузки)). В этом типе АВР в качестве силового коммутирующего элемента используются мощные тиристоры, обеспечивающие практически нулевое время переключения между двумя независимыми вводами.

Преимущества:

Основное и очень значимое преимущество: практически нулевое время переключения между вводами (возможно применения для переключения между ИБП (источник бесперебойного питания) разной мощности, разных производителей). Переключение между вводами никак не сказывается на электроснабжении ответственных потребителей электроэнергии (серверы, компьютерное оборудование, устройства автоматики, телекоммуникационное оборудование и т.д.). При использовании LTM в схемах электроснабжения критически важных объектов или ответственных потребителей можно существенно сэкономить на применении ИБП, ДГА и других устройств независимого электроснабжения.

Недостатки:

Основной недостаток это очень высокая стоимость по сравнению с механическими АВР (на контакторах и рубильниках).

Электромеханические АВР на контакторах

АВР на контакторах получили наиболее широкое применение, в основном, благодаря низкой стоимости комплектующих. В основе щита АВР на контакторах обычно применяются два контактора с взаимной электрической или электромеханической блокировкой и реле контроля фаз.

В самых дешевых вариантах АВР на контакторах используется обычное реле, контролирующее наличие напряжения только на одной фазе, без контроля качества электроэнергии (частота, напряжение). При пропадании напряжения на одной фазе, АВР на контакторах переключает нагрузку на другой (резервный) ввод электроэнергии.

При использовании качественных полнофункциональных реле контроля фаз (контроль 3-х фаз: напряжение, частота, временные задержки на перевод нагрузки, возможность программирования диапазонов и задержек) и применении механической блокировки (предотвращает одновременную подачу электропитания с двух вводов) АВР на контакторах становится довольно качественным и законченным изделием.

Преимущества:

Дешевая стоимость, выполняет защитные функции (высокий ток, короткое замыкание).

Недостатки:

Отсутствие возможности ручного переключения при неисправности АВР, низкая ремонтопригодность (при отказе одного из элементов АВР, требуется демонтаж и ремонт всего изделия), длительное время переключения (от 16 до 120 мс). Небольшое количество циклов срабатывания. Вероятность залипания контактов контактора.

Электромеханические АВР на автоматических выключателях с электроприводом

Такие АВР несколько уступают предыдущим по быстродействию и также позволяют осуществить механическую и электрическую блокировки при двухвходовой схеме.

Недостатки:

Более сложная схема и более высокую стоимость этих устройств.

Электромеханические АВР на управляемых переключателях с электроприводом

В основе лежит рубильник (переключатель с нулевым средним положением, приводимый в действие моторным приводом. Привод управляется контроллером, который является частью автоматического рубильника или может устанавливаться отдельно).

Преимущества:

Высокая ремонтопригодность: автоматический рубильник состоит из трех основных элементов: рубильник (переключатель), моторный привод, контроллер. Выход из строя рубильника практически невозможен. При выходе из строя моторного привода или контроллера (реле контроля фаз), возможна их замена без демонтажа щита АВР и без демонтажа самого рубильника. При снятом моторном приводе и контроллере возможно переключение нагрузки в ручном режиме. Легкая сборка щита АВР. Для сборки щита требуется установить рубильник на монтажную плату, никакие дополнительные силовые или контрольные соединения не используются. Высокая надежность: за счет применения малого количества элементов и за счет использования в качестве силового коммутирующего устройства рубильника.

Недостатки:

Относительно высокая стоимость (на токи до 125 А). Отсутствие защитных функций

Автоматический ввод резерва и дополнительные функции

У всех рассмотренных типов АВР при необходимости могут быть реализованы функции контроля верхнего и нижнего уровня напряжений, введены элементы регулировки задержек и схемы управления работой ДЭС.

На основании выше сказанного, можно сделать следующие выводы:

Для системы гарантированного электроснабжения, имеющей два независимых ввода электроснабжения:
Для системы гарантированного электроснабжения, имеющей три независимых ввода электроснабжения:

Практические рекомендации, которые подтверждены в различных проектах

Система гарантированного электроснабжения мощностью до 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

В этом случае могут быть предложены автоматические коммутаторы серии АК фирмы «ППФ БИП-сервис», представляющие собой АВР контакторного типа. Эти аппараты имеют:

Такой перечень функциональных возможностей позволяет успешно применять коммутаторы серии АК в системах, содержащих ИБП.

Система гарантированного электроснабжения мощностью более 100 кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

Для таких систем более целесообразно использовать автоматические коммутаторы серии АКП, которые представляют собой АВР на управляемых переключателях с электроприводом.

Эти аппараты имеют все перечисленные выше особенности, но кроме того, позволяют управлять переключением входов вручную при любом напряжении или его отсутствии. Переключатели оснащены механическими замками, позволяющими заблокировать их в любом из возможных состояний, что может быть в некоторых случаях важно для потребителя.

Система гарантированного электроснабжения, работающая от одного сетевого ввода и имеющая в качестве резервного питания ДЭС.

Для такой конфигурации может быть применена панель переключения нагрузки типа TI. Также представляющая собой АВР контакторного типа, но имеющая в своем составе все необходимые элементы для управления автоматизированной ДЭС. Изделия этого типа, как правило, рекомендуются фирмами — изготовителями дизель-генераторов, в частности, фирмой F.G.Wilson.

Система гарантированного электроснабжения, имеющая в своем составе ИБП и работающая от двух сетевых входов и резервной ДЭС.

Здесь могут быть предложены следующие варианты построения АВР:

  1. каскадное соединение АВР серии АК или АКП и панели переключения TI
  2. трехвходовой коммутатор серии АК с функцией управления ДЭС
  3. трехвходовой коммутатор серии АКП с функцией управления ДЭС

   Система гарантированного электроснабжения

Схемы трехвходовых АВР могут быть экономически более привлекательны. В то же время следует повторно отметить то обстоятельство, что для трехвходовой контакторной схемы невозможна полноценная механическая блокировка всех входов между собой, что определяется конструктивными особенностями контакторов.

В связи с этим в трехвходовых контакторных АВР целесообразно установить электрическую и механическую блокировку между ДГ и каждым из сетевых вводов. А между сетевыми вводами предусмотреть только электрическую блокировку. Именно по такому принципу выполнены трехвходовые коммутаторы серии АК.

Схема трехвходового коммутатора серии АКП, как отмечалось ранее, исключает возможность замыкания входов между собой за счет конструкции переключателей и одновременно дешевле, чем два отдельных каскадно соединенных АВР.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

АВР для генератора: устройство, принцип работы, схемы подключения

Управление источником резервного питания ручным запуском во многих случаях оправдано. Однако, для обеспечения непрерывного процесса функционирования электрического оборудования существует необходимость в бесперебойном питании. Актуальность вопроса автоматизации вводу резерва довольно часто выходит на первый план. С этой целью применяются устройства автоматического включения резерва (АВР). Современные устройства АВР для генератора – это надёжные приборы, исключающие участие человека в управлении резервным питанием.

Автоматическое управление запуском генераторов в случае пропадания сети позволяет возобновлять подачу электричества практически мгновенно или с небольшой задержкой. Таким образом, обеспечивается непрерывное функционирование электрооборудования, остановка которого может повлечь нежелательные последствия или спровоцировать аварийный режим в работе контролируемой системы. Оборудование дизельных и бензиновых генераторов электронным блоком автозапуска объективно является необходимой мерой для повышения безопасности эксплуатации отдельных электрических приборов.

Что такое АВР

Это блок, состоящий из нескольких узлов, который в автоматическом режиме переключает нагрузку между основным и резервным источником тока. Некоторые однофазные и трёхфазные модели бензиновых и дизельных генераторов оборудованы АВР изначально. Для переключения нагрузки потребуется только установить специальный переключатель после электросчётчика. Положение силовых контактов управляется основным источником электроэнергии.

Практически все модели с запуском электростанции от аккумулятора можно оборудовать автономными системами АВР. При этом для монтажа блоков резервного ввода применяются шкафы АВР. При этом щиты АВР (рисунок 1) можно размещать непосредственно возле газовых генераторов либо устанавливать блоки в общем электрическом щите.

Рисунок 1. Пример электрического щита АВР

Основная функция блока АВР заключается в том, чтобы осуществить автоматический запуск электростанции после исчезновения электрического тока в общей сети, а затем подключить нагрузку к резервному электроснабжению. При возобновлении подачи электроэнергии блоком автоматики нагрузка переключается на основную электрическую сеть, а резервный источник отключается.

Классификация устройств АВР:

Электрическую схему АВР можно настроить таким образом, чтобы обеспечить энергией не всей локальной сети, а лишь тех линий, которые являются критическими. Некоторые схемы позволяют учитывать приоритетность линий. В первую очередь питанием обеспечиваются те цепи, которые обеспечивают электричеством важные системы жизнеобеспечения. Такой подход позволяет рационально распределить нагрузки.

Устройство и принцип работы

АВР для генератора состоит из трёх взаимосвязанных основных блоков:

С целью повышения надёжности резервной энергосистемы устройства АВР могут комплектоваться дополнительными блоками. Например, включение в схему инверторов позволяет выровнять провалы в напряжениях, исключить временные задержки, сделать выходной ток более качественным.

Включение резервной линии обеспечивает контактная группа. За наличием вводного напряжения следит реле контроля фаз.

Рассмотрим принцип работы системы резервного питания на примере упрощённой схемы (рис. 2). В штатном режиме, когда питание осуществляется от основной сети, контакторный блок направляет электроэнергию на линии потребителей. На схеме показан дополнительный блок – инвертор, преобразующий постоянный ток от аккумулятора в переменный, напряжением 220 В.

Рис. 2. Упрощённая схема резервного питания

Сигнал о наличии вводного напряжения подаётся на блок логических и индикационных устройств. В номинальном режиме вся система находится в устойчивом состоянии. При аварии в основной сети (напряжение падает ниже установленного уровня) насыщение соленоида реле контроля фаз становится недостаточным для удерживания контактов в рабочем (нормально замкнутом) состоянии. Происходит разъединение контактов и отключение нагрузки от линии электропередач.

Если система оборудована инвертором, как показано на схеме, он переходит в режим генерации переменного тока, напряжением 220 В. Таким образом, потребители получают стабильное напряжение даже при полном отсутствии тока в коммерческой сети.

Если параметры линий электропередач не восстанавливаются в заданный промежуток времени, контролёр подаёт сигнал на запуск генератора. При поступлении от альтернатора стабильного напряжения, контакторы переключаются на резервную линию.

Автоматическое включение потребительской сети происходит следующим образом: на реле контроля фаз поступает напряжение, переключающее контакторы на основную линию. Цепь резервного питания разъединяется. Сигнал от контролёра поступает на механизм управления подачей топлива, который закрывает заслонку в бензиновом двигателе или перекрывает дизтопливо в системе питания дизеля. Электростанция отключается.

При полном автоматическом переключении участие оператора не требуется. Система надёжно защищена от взаимодействия встречных токов и КЗ. Для этого применяются дополнительные реле и механизмы блокировок, которые не показаны на схеме.

При необходимости оператор может переключать линии вручную с панели контролёра. Он также может изменять настройки блока управления, включать ручной или автоматический режим работы. Фото панели показано на рис. 3.

Рис. 3. Панель контролёра резервного питания

В АВР могут реализовываться несколько режимов функционирования:

Ручной режим чаще всего используют наладчики при настройке АВР.

Схемы подключения АВР и их описание

Основная функция АВР – автоматическое переключение вводов, причём таким способом, чтобы исключить встречные токи.

Простая схема на рис. 4 объясняет принцип переключения.

Рисунок 4. Схема АВР

Контакты КМ1и КМ2 взаимосвязаны. После размыкания одного контакта, замыкается другой. Они не могут быть одновременно включены.

Существует множество различных схем подключения автоматического ввода резерва, но принцип их построения всегда такой: АВР устанавливают между вводом и потребителями. Обычно после электросчётчика. Сам щит с автоматикой может располагаться где угодно, но принцип его подключения именно такой. Этот принцип наглядно иллюстрирует схема на рис. 5.

Рис. 5. Наглядная схема подключения АВР

Детальная схема подключения блока автоматического запуска генератора показана на рисунке 6. На схеме К1 и К2 – это контакторы. Цифрами в кружках обозначены номера клемм. Пользуясь этой схемой не сложно подключить такой блок самостоятельно.

Рис. 6. Детальная схема подключения блока автозапуска генератора (БАГ)

Принципиальная схема подключения АВР для частного дома показана на рис. 7.

Рис. 7. Принципиальная схема

В данной схеме применено АЗУ, обеспечивающее стабильное напряжение и непрерывное питание в локальной сети.

В качестве примера приводим две схемы для трёхфазного тока (рис. 8). На изображении В показано одностороннее исполнение(дополнительное реле напряжения PH). При таком подключении генератор запускается в автоматическом режиме, после прекращения подачи электроэнергии. Другими словами, ввод от генератора является резервным.

На изображении А – исполнение двухстороннее. Обе секции имеют одинаковый приоритет. Такое подключение позволяет переключать линии, не зависимо от наличия напряжения в каждой из них.

Рис. 8. Подключение АВР для трёхфазного тока

Выбор схемы зависит от поставленной задачи, которую вы намерены решить.

Самостоятельное изготовление АВР

Если вы приобрели генератор с электростартером, то можете самостоятельно автоматизировать процесс ввода резерва. Для этого необходимо подобрать схему, отвечающую особенностям вашей домашней сети. После этого купите все необходимые детали, с учётом мощностей потребителей.

Вам понадобится:

  1. Универсальный контроллёр.
  2. Контакторы (для самой простой схемы – не менее 2-х).
  3. Электрический шкаф.
  4. Трёхуровневый переключатель рабочих режимов.
  5. Блок питания на 1 – 3 Ампера.
  6. Автоматика для пуска/остановки двигателя генератора (если он не оборудован таковой).
  7. Соединительные кабели, рабочие инструменты.

Этапы работы:

  1. Установка шкафа. Выберите подходящее место для электрощита (желательно ближе к основному вводу).
  2. Монтаж деталей. Размещайте все узлы так, чтобы был доступ ко всем контакторам и клеммам.
  3. Подключение линий. Строго следуйте схемам и соблюдайте назначение клемм. Пользуйтесь обозначениями на крышках и корпусах приборов. Следите, чтобы провода не пересекались. В последнюю очередь присоединяйте провода ввода, разумеется, при отключённом вводном автомате.
  4. После монтажа обязательно протестируйте работоспособность блока АВР.

Выбор АВР

Приведенная ниже таблица поможет вам определиться с выбором типа АВР.

Таблица 1

Тип АВР Особенности устройства Действие
Одностороннего действия Две секции. Одна рабочая, а одна резервная Подключает резервную линию в случае пропадания напряжения на основной
Двухстороннего действия Секции равнозначные Можно подключить любую линию, не зависимо от наличия напряжения
С восстановлением Контролирует наличие напряжения на основном вводе после переключения на резервное питание При появлении напряжения на основной линии переводит схему (с небольшой задержкой) в исходное состояние
Без восстановления Переключает секции после пропадания напряжения на основном вводе Для перевода в основной режим требуется вмешательство оператора

Полезное видео

Что такое АВР в электрике?

В нашем мире комфорта и изобилия человеку живется очень уютно. Однако всегда надо помнить, что «обязательными подпорками» уюта является современная техника. Более того, выстроено уже несколько глобальных сетей, работающих на то, чтобы людям было светло, тепло и не скучно. Но если что-то где-то вырубается... Тогда человек чувствует себя сразу слепым, голым и беззащитным.

Настоящая автоматика — это не только когда нажал на кнопочку и что-то заработало. Настоящая автоматика сама умеет отслеживать режим работы каких-то аппаратов и в нужный момент подавать корректирующее воздействие. Да так, чтобы никто и не догадался, что где-то что-то изменилось, произошло переключение, и все заработало как-то иначе.

Для обычного «клиента» как бы ничего и не случилось: работало, потом что-то где-то щелкнуло, или даже вообще без внешних признаков — и работа продолжилась. Вот так должна действовать АВР — система автоматического ввода резерва.

Резервирование и резервное питание

Резервирование в конструкциях каких-то важных для жизни и деятельности систем — дело обычное.  Есть такие автоматические схемы, в которых даже в случае выхода из строя, «сгорания» каких-то модулей или блоков автоматически вводятся в действие резервные, до этого момента находившиеся в схеме, но бездействовавшие. Такие схемы отличаются повышенной живучестью и применяются в важных приборах и аппаратах. Например, в компьютерных серверах используются RAID-массивы дисков памяти с динамическим резервированием на случай выхода из строя некоторых из них.

Резервирование хорошо иметь при пользовании связью. Например, сейчас, во времена всеобщей и повсеместной мобильной связи, многие отказались от услуг традиционной связи — домашней телефонии, еще недавно которую было иметь важно, а кое-где даже почетно. Вот отказались, а зря. Случись что с мобильником — деньги кончились, симка испортилась, в тазик с водой уронили! — и позвонить уже нечем. Надо бежать куда-то пешим ходом.

Так как электропитание у нас едва ли не самая важная вещь в теперешней жизни и в быту, то логично и здесь позаботиться о резервировании. Часто так и делается, хотя бы на тех же компьютерах: свет выключился, а у него имеется свое устройство резервного питания UPS (Uninterruptible Power Supply — непрерываемая поддержка питания). В таком устройстве питание поддерживают аккумуляторы. Непрерывно после выключения напряжения сутками они питать компьютер, конечно, не смогут, но подождать, пока хозяин закончит какие-то свои важные работы в течение 20–30 минут, а то и часа, им вполне по силам.

Аналогичное резервное питание встречалось еще недавно в связи на радиорелейных вышках. Вышка со всеми ее усилителями-ретрансляторами, принимавшими от зеркал-антенн радиосигнал, и переизлучавшими его дальше, питалась энергией от обычной электросети 220/380 В. Но на случай сбоя питания неподалеку располагался целый каскад аккумуляторных батарей, способных поддержать энергию в течение 3–4 часов. И за это время вполне могли быть устранены аварии, связанные с питанием важного устройства.       

 Другими видами резервного питания могут быть местные дизель-генераторы или специальные сети резервного питания (которые тоже работают от где-то установленных автономно запускаемых генераторов).

Дизель-генераторы сейчас выпускаются в очень большом ассортименте: от небольших переносных мощностью в полкиловатта до больших стационарных. Их и приобретают для использования в качестве автономных источников питания где-то за городом, при строительстве, в походе…

Но они же вполне пригодны как резервные генераторы, и можно соорудить аварийное питание с их помощью. Важно организовать правильное автоматическое переключение.

Работа системы автоматического включения питания

Принцип работы АВР состоит в контроле наличия питания основного источника и включении источника резервного питания в случае его внезапного отсутствия. Также должно работать обратное переключение: при появлении основного питания (аварию устранили) оно должно переключить сеть на основной источник, а резервное питание остановить.

При этом важно быстродействие. Идеальный вариант, когда потребляющая сеть не замечает переключения. Это зависит не только от скорости срабатывания электронных компонентов и силовых реле. Резервное питание может требовать некоторого времени для запуска. Поэтому система переключения может быть не одноступенчатой. Сначала включаются быстродействующие источники, а после ввода в действие дизель-генераторов и входа их в рабочий режим переключение производится на них. Обратное переключение таких сложностей не потребует, так как гашение дополнительного источника может проводиться и во время уже заработавшей основной сети.

Схема автоматического переключения питания на основе АВР

Главная функция — отслеживать питание в основной сети. На изображенной схеме основное и резервное напряжения попадают через включенные автоматы на контакторы КМ. Причем, стоящий на основном питании замкнут и управляет размыканием того, который поставлен на резервную линию питания. При пропадании напряжения на основной линии, ее контактор перестает размыкать контактор на резервном питании. Кроме того, он сам разомкнется, в этом случае начнет работать резервная линия питания. При появлении напряжения питания на основной линии ее контактор замкнется сам и разомкнет контактор резервной линии. Таким образом, восстановится первоначальное положение, когда основная линия включена, а резервная разомкнута.

   Простейшая схема автоматического ввода резервного питания. Слева – контактор. L12 – линия основного питания; L22 – линия резервного питания

Данную схему можно считать наипростейшей. Она срабатывает только по выполнению одного условия: при снижении напряжения основной линии ниже определенного порога. Тогда как в реальности может отслеживаться целый ряд условий и включение резервного питания производиться специальной логической решающей схемой.

Простейшая система резервного питания для квартиры на основе аккумуляторной батареи

Для квартиры можно использовать в качестве резервного питания обычный автомобильный аккумулятор. Большой плюс такой системы — хорошее быстродействие. Мощностью, достаточной для питания больших силовых агрегатов, аккумулятор, конечно, не обладает, но обеспечить аварийное освещение на время устранения проблем с основным питанием вполне может. Единственное, что нужно приобрести для него, это инвертор напряжения, который, беря от аккумулятора его стандартные 12 вольт постоянного тока, выдавал бы на выход  ~220 В.

Система ввода резервного питания на основе магнитного пускателя КМ1 (справа). Резервный ввод подает переменное напряжение 220В от инвертора, преобразующего постоянное напряжение аккумулятора.

Увеличивать мощность резервного питания можно, подключив параллельно несколько одинаковых аккумуляторов.

Система резервного питания на основе бытового генератора

Кроме мощности и емкости системы по поддержанию напряжения есть и другие решающие факторы. Система с генератором может резервировать не только однофазное питание, но и трехфазное. Резервное питание на основе генератора больше подходит для электроснабжения отдельного дома, усадьбы или крестьянского хозяйства. Снабжение питанием в этом случае зависит от количества имеющегося запаса топлива, то есть реально снабжать своих потребителей неограниченно во времени.

Схема резервного питания на основе генератора. Генератор может быть трехфазным или однофазным, в зависимости от сети нагрузки.

Генератор во время переключения необходимо запустить, для этого в сети должен наличествовать запускающий стартер. Логическая схема управления должна включать стартер только на время запуска генератора, после чего при успешном запуске стартер выключается. При возобновлении основного питания, после переключения генератор должен гаситься через некоторое время. Это достигается логической схемой стартера.

Система автозапуска двигателя для резервного питания. Схема настраивается достаточно гибко и может предусматривать различные режимы запуска, например, предварительный разогрев в зимнее время

Блок управления АВР

Компактно логическая схематика может быть собрана в одном блоке управления автоматической системой ввода резерва. Настройка устройства вполне внятно описывается инструкцией. Возможно приобретение БУ, отвечающего потребностям пользователя, в соответствии с параметрами его сети и устройств резервирования.

Блок управления АВР

Оборудование позволяет учитывать множество факторов, управлять однофазным или трехфазным включением, на панель выведена индикация, отражающая режимы работы и управления.

Системы автоматического ввода резерва очень полезны не только для больших производственных предприятий или организаций. Ими вполне можно обезопасить питание в квартире или частном доме.

Особенно интересен вариант, когда при строительстве добротного хозяйства используются временные источники электропитания. После окончания строительства и подключения дома к сети питания по постоянной схеме необходимость во временных источниках отпадает. Компактный дизель-генератор можно, разумеется, реализовать кому-то еще. Но неплохим вариантом видится дать ему новую жизнь в качестве резервного источника энергии, найдя для него почетное место в гараже или в подвале и обеспечив его работу толковой схемой управления резервным электропитанием.   

49. Автоматическое включение резерва (авр). Назначение, виды, требования к авр. Схемы, принцип действия

Назначение АВР

Схемы электрических соединений энергосистем и отдельных электроустановок должны обеспечивать надежность электроснабжения потребителей. Высокую степень надежности обеспечивают схемы питания одновременно от двух и более источников (линий, трансформаторов), поскольку аварийное отключение одного из них не приводит к нарушению питания потребителей.

Несмотря на эти очевидные преимущества многостороннего питания потребителей, большое количество подстанций, имеющих два источника питания и более, работает по схеме одностороннего питания. Одностороннее питание имеют также секции собственных нужд электростанций.

Применение такой менее надежной, но более простой схемы электроснабжения во многих случаях оказывается целесообразным для снижения токов КЗ, уменьшения потерь электроэнергии в питающих трансформаторах, упрощения релейной защиты, создания необходимого режима по напряжению, перетокам мощности и т. п. При развитии электрической сети одностороннее питание часто является единственно возможным решением, так как ранее установленное оборудование и релейная защита не позволяют осуществить параллельную работу источников питания.

Используются две основные схемы одностороннего питания потребителей при наличии двух или более источников.

В первой схеме один источник включен и питает потребителей, а второй отключен и находится в резерве. Соответственно этому первый источник называется рабочим, а второй – резервным (рис, 10.9, а, б). Во второй схеме все источники включены, но работают раздельно на выделенных потребителей. Деление осуществляется на одном из выключателей (рис.10.9, в, г).

Недостатком одностороннего питания является то, что аварийное отключение рабочего источника приводит к прекращению питания потребителей. Этот недостаток может быть устранен быстрым автоматическим включением резервного источника или включением выключателя, на котором осуществлено деление сети. Для выполнения этой операции широко используется автоматическое включение резерва (АВР). При наличии АВР время перерыва питания потребителей в большинстве случаев определяется лишь временем включения выключателей резервного источника и составляет 0,3–0,8 сек. Рассмотрим принципы использования АВР на примере схем, приведенных на рисунке.

1. Питание подстанции А (рис. 10.9, а) осуществляется по рабочей линии Л1 от подстанции Б. Вторая линия Л2, приходящая с подстанции В, является резервной и находится под напряжением (выключатель ВЗ нормально отключен). При отключении линии Л1 автоматически от АВР включается выключатель ВЗ линии Л2, и таким образом вновь подается питание потребителям подстанции А.

Схемы АВР могут иметь одностороннее или двустороннее действие. При одностороннем АВР линия Л1 всегда должна быть рабочей, а линия Л2 – всегда резервной. При двустороннем АВР любая из этих линий может быть рабочей и резервной.

2. Питание электродвигателей и других потребителей собственных нужд каждого агрегата электростанции осуществляется обычно от отдельных рабочих трансформаторов (Т1 и Т2 на рис. 10.11, б). При отключении рабочего трансформатора автоматически от АВР включаются выключатель В5 и один из выключателей В6 (при отключении Т1) или В7 (при отключении Т2) резервного трансформатора ТЗ.

3. Трансформаторы Т1 и Т2 являются рабочими, но параллельно работать не могут и поэтому со стороны низшего напряжения включены на разные системы шин (рис. 10.11, в). Шиносоединительный выключатель В5 нормально отключен. При аварийном отключении любого из рабочих трансформаторов автоматически от АВР включается выключатель В5, подключая нагрузку шин, потерявших питание, к оставшемуся в работе трансформатору. Каждый трансформатор в рассматриваемом случае должен иметь мощность, достаточную для питания всей нагрузки подстанции. В случае, если мощность одного трансформатора недостаточна для питания всей нагрузки подстанции, при действии АВР должны приниматься меры для отключения части наименее ответственной нагрузки.

4. Подстанции В и Г (рис. 10.11, г) нормально питаются радиально от подстанций А и Б соответственно. Линия ЛЗ находится под напряжением со стороны подстанции В, а выключатель В5 нормально отключен. При аварийном отключении линии Л2 устройство АВР, установленное на подстанции Г, включает выключатель В5, таким образом питание подстанции Г переводится на подстанцию В по линии ЛЗ. При отключении линии Л1 подстанция В и вместе с ней линия ЛЗ остаются без напряжения. Исчезновение напряжения на трансформаторе напряжения ТН также приводит в действие устройство АВР на подстанции Г, которое включением выключателя В5 подает напряжение на подстанцию В от подстанции Г.

Принципы осуществления АВР при разных схемах питания потребителей

Опыт эксплуатации энергосистем показывает, что АВР является весьма эффективным средством повышения надежности электроснабжения. Успешность действия АВР составляет 90-95%. Простота схем и высокая эффективность обусловили широкое применение АВР на электростанциях и в электрических сетях.

Основные требования к схемам АВР

Все устройства АВР должны удовлетворять следующим основным требованиям:

1. Схема АВР должна приходить в действие в случае исчезновения напряжения на шинах потребителей по: любой причине, в том числе при аварийном, ошибочном или самопроизвольном отключении выключателей рабочего источника питания, а также при исчезновении напряжения на шинах, от которых осуществляется питание рабочего источника. Включение резервного источника питания иногда допускается также при КЗ на шинах потребителя. Однако очень часто схема АВР блокируется, например, при работе дуговой защиты в комплектных распредустройствах. При отключении от максимальной защиты трансформаторов питающих шины НН, работе АВР, предпочтительна работа АПВ. Поэтому на стороне НН (СН) понижающих трансформаторов подстанций принимается комбинация АПВ-АВР. При отключении трансформатора его защитой от внутренних повреждений, работает АВР, а при отключении ввода его защитой – АПВ. Такое распределение предотвращает посадку напряжения, а иногда и повреждение секции, от которой осуществляется резервирование.

2. Для того чтобы уменьшить длительность перерыва питания потребителей, включение резервного источника питания должно производиться возможно быстрее, сразу же после отключения рабочего источника.

3. Действие АВР должно быть однократным для того, чтобы не допускать нескольких включений резервного источника на неустранившееся КЗ.

4. Схема АВР не должна приходить в действие до отключения выключателя рабочего источника для того, чтобы избежать включения резервного источника на КЗ в неотключившемся рабочем источнике. Выполнение этого требования исключает также возможное в отдельных случаях несинхронное включение двух источников питания.

5. Для того чтобы схема АВР действовала при исчезновении напряжения на шинах, питающих рабочий источник, когда его выключатель остается включенным, схема АВР должна дополняться специальным пусковым органом минимального напряжения.

6. Для ускорения отключения резервного источника питания при его включении на неустранившееся КЗ должно предусматриваться ускорение действия защиты резервного источника после АВР. Это особенно важно в тех случаях, когда потребители, потерявшие питание, подключаются к другому источнику, несущему нагрузку. Быстрое отключение КЗ при этом необходимо, чтобы предотвратить нарушение нормальной работы потребителей, подключенных к резервному источнику питания. Ускоренная защита обычно действует по цепи ускорения без выдержки времени. В установках же собственных нужд, а также на подстанциях, питающих большое количество электродвигателей, ускорение осуществляется до 0.3-0,5 сек. Такое замедление ускоренной защиты необходимо, чтобы предотвратить ее неправильное срабатывание в случае кратковременного замыкания контактов токовых реле в момент включения выключателя под действием толчка тока, обусловленного сдвигом по фазе между напряжением энергосистемы и затухающей ЭДС тормозящихся электродвигателей, который может достигать 180°.

Принципы действия АВР

Рассмотрим принцип действия АВР на примере двухтрансформаторной подстанции, приведенной на рис. 10.12. Питание потребителей нормально осуществляется от рабочего трансформатора Т1, Резервный трансформатор Т2 отключен и находится в автоматическом резерве.

При отключении по любой причине выключателя В1 трансформатора Т1 его вспомогательный контакт БК1-2 разрывает цепь обмотки промежуточного реле РП1. В результате якорь реле РП1, подтянутый при включенном положении выключателя, при снятии напряжения отпадает с некоторой выдержкой времени и размыкает контакты.

Второй вспомогательный контакт БК1.3 выключателя В1 замкнувшись, подает плюс через еще замкнутый контакт РП1.1 на обмотку промежуточного реле РП2, которое своими контактами производит включение выключателей ВЗ и В4 резервного трансформатора, воздействуя на контакторы включения КВЗ и КВ4. По истечении установленной выдержки времени реле РП1 размыкает контакты и разрывает цепь обмотки промежуточного реле РП2. Если резервный трансформатор будет включен действием АВР на неустранившееся КЗ, и отключится релейной защитой, то его повторного включения не произойдет. Таким образом, реле РП1 обеспечивает однократность действия АВР и поэтому называется реле однократности включения. Реле РП1 вновь замкнет свои контакты и подготовит схему АВР к новому действию лишь после того, как будет восстановлена нормальная схема питания подстанции и включен выключатель В1. Выдержка времени на размыкание контакта реле РП1 должна быть больше времени включения выключателей ВЗ и В4, для того чтобы они успели надежно включиться.

С целью обеспечения действия АВР при отключении выключателя В2 от его вспомогательного контакта БК2.2 подается импульс на катушку отключения К01 выключателя В1. После отключения выключателя В1 АВР запускается и действует, как рассмотрено выше. Кроме рассмотренных случаев отключения рабочего трансформатора потребители также потеряют питание, если по какой-либо причине остаются без напряжения шины высшего напряжения подстанции Б. Схема АВР при этом не подействует, так как оба выключателя рабочего трансформатора остались включенными.

Для того чтобы обеспечить действие АВР и в этом случае, предусмотрен специальный пусковой орган минимального напряжения, включающий в себя реле PHI, РН2, РВ1 и РПЗ. При исчезновении напряжения на шинах 5, а, следовательно, и на шинах В подстанции реле минимального напряжения, подключенные к трансформатору напряжения ТН1, замкнут свои контакты и подадут плюс оперативного тока на обмотку реле времени РВ1 через контакт реле РНЗ. Реле РВ1 при этом запустится и по истечении установленной выдержки времени подаст плюс на обмотку выходного промежуточного реле РПЗ, которое производит отключение выключателей В1 и В2 рабочего трансформатора. После отключения выключателя В1, АВР действует, как рассмотрено выше.

Реле напряжения РНЗ предусмотрено для того, чтобы предотвратить отключение трансформатора Т1 от пускового органа минимального напряжения в случае отсутствия на шинах высшего напряжения А резервного трансформатора Т2, когда действие АВР будет заведомо бесполезным. Реле напряжения РНЗ, подключенное к трансформатору напряжения ТН2 шин А, при отсутствии напряжения размыкает свой контакт и разрывает цепь от контактов реле РН1 и РН2 к обмотке реле времени РВ1.

В схеме АВР предусмотрены две накладки: h2 – для отключения пускового органа минимального напряжения и Н2 — для вывода из работы всей схемы АВР. Действие АВР и пускового органа минимального напряжения сигнализируется указательными реле РУ.

Пусковые органы минимального напряжения

Пусковые органы минимального напряжения должны выполняться таким образом, чтобы они действовали только при исчезновении напряжения и не действовали при неисправностях в цепях напряжения. Так, в рассмотренной схеме на рис. 10.12 и в схеме на рис. 10.13 контакты двух реле минимального напряжения РН1 и РН2 включены последовательно, что предотвращает отключение рабочего трансформатора Т1 при отключении одного из автоматических выключателей (предохранителей) в цепях напряжения. Однако ложное отключение трансформатора все же может произойти, если повредится трансформатор напряжения ТН1 или отключатся оба автоматических выключателя в цепях напряжения. Для повышения надежности используются два реле минимального напряжения, включенные на разные трансформаторы напряжения.

Рассмотренные схемы пусковых органов минимального напряжения могут быть выполнены также с помощью двух реле времени (типа РВ-235) переменного напряжения, как показано на рис, 10.13, б. Эти реле, подключаемые непосредственно к трансформаторам напряжения, выполняют одновременно функции двух реле: реле минимального напряжения и реле времени. При исчезновении напряжения реле начинают работать и с установленной выдержкой времени замыкают цепь отключения выключателей рабочего источника питания.

Пусковой орган минимального напряжения может быть выполнен с одним реле времени РВ типа РВ-235К, которое включается через вспомогательное устройство типа ВУ-200, представляющее собой трехфазный выпрямительный мост (рис. 10.13, в). Это реле времени начинает работать лишь в том случае, если напряжение исчезнет одновременно на трех фазах. При отключении одного из автоматических выключателей в цепях напряжения реле не работает, так как на его обмотке остается напряжение от двух других фаз.

В схеме, приведенной на рис. 10.13, г, блокировка от нарушения цепей напряжения осуществляется с помощью реле минимального тока РТ, включенного в цепь трансформаторов тока рабочего источника питания. В нормальных условиях, когда рабочий источник питает нагрузку, по обмотке реле РТ проходит ток, и оно держит свои контакты разомкнутыми. В случае отключения рабочего источника или при исчезновении напряжения на питающих шинах, когда исчезает ток нагрузки, реле РТ замыкает свои контакты и совместно с реле минимального напряжения РН производит отключение рабочего источника питания.

При отключении источника, питающего шины высшего напряжения рабочего трансформатора или линии (например, шины Б на рис. 10.12), пусковой орган минимального напряжения может npийти в действие не сразу, так как в течение примерно 0,5—1,5 сек синхронные и асинхронные, электродвигатели будут поддерживать на шинах остаточное напряжение, превышающее напряжение срабатывания реле минимального напряжения. Это обстоятельство задерживает работу АВР, поскольку вначале должно затухнуть остаточное напряжение до напряжения срабатывания пускового органа, а затем должен сработать пусковой орган, который всегда имеет выдержку времени, затем должен отключиться рабочий источник, и только после этого произойдет включение резервного источника.

Для ускорения действия АВР в указанных условиях пусковой орган целесообразно дополнять реле понижения частоты, который выявляет прекращение питания раньше, чем реле минимального напряжения. В самом деле, после отключения источника питания электродвигатели начинают резко снижать частоту вращения, благодаря чему частота остаточного напряжения также быстро снижается. При уставке срабатывания реле понижения частоты 48 Гц оно сработает при снижении частоты вращения электродвигателя и синхронных компенсаторов всего на 4%, что происходит уже через 0,1–0,2 сек. Схема пускового органа АВР с двумя реле понижения частоты приведена на рис. 10.14, а.

Пусковой орган включает в себя два реле понижения частоты РЧ1 и РЧ2 и одно промежуточное реле Р (рис. 10.14, б). Реле РЧ1 подключено к трансформатору напряжения ТН1 шин низшего напряжения, к которому подключены также реле напряжения РН1 и реле времени РВ1 и РВ2. Реле РЧ2 подключено к трансформатору напряжения TН2 шин резервного источника питания, к которому подключено также реле РН2.

Пусковым органом минимального тока и напряжения.

Рассматриваемый пусковой орган работает следующим образом. При отключении источника, питающего шины высшего напряжения Б (см. рис, 10.12, а), электродвигатели, питающиеся от шин В, поддерживают на этих шинах остаточное напряжение, частота которого быстро снижается. При снижении частоты до уставки реле РЧ1 оно сработает и через контакт реле РН1, замкнутый вследствие наличия остаточного напряжения, и размыкающий контакт промежуточного реле РП1 воздействует на отключение выключателей рабочего источника питания. Благодаря наличию контакта реле напряжения РН1 предотвращается ложное срабатывание пускового органа при кратковременном снятии напряжения с обмотки реле частоты РЧ1, когда могут замкнуться его контакты. В рассмотренном случае, когда срабатывание (замыкание контакта) реле РЧ1 происходит вследствие отключения рабочего источника питания, реле РЧ2 не замыкает контакт, так как на шинах подстанции А сохраняется нормальное напряжение. Реле РЧ2 предназначено для того, чтобы предотвратить отключение рабочего источника питания при общесистемном понижении частоты. В этом случае частота напряжения будет снижаться одинаково на всех шинах (А, Б, В), но первым сработает реле РЧ2, которое настраивается на более высокую уставку, чем реле РЧ1. Сработав, реле РЧ2 воздействует на промежуточное реле РП1, которое своим контактом размыкает цепь от контакта реле РЧ1, предотвращая отключение рабочего источника питания при срабатывании реле РЧ1.

На рис. 10.14, в изображена более простая схема пускового органа с одним реле понижения частоты в сочетании с пусковым органом минимального тока. В случае отключения источника, питающего шины высшего напряжения Б, исчезнет ток в рабочем трансформаторе и понизится частота остаточного напряжения на шинах В. При этом сработают и замкнут контакты реле минимального токи РТ1 и реле частоты РЧ1, что приведет к созданию цепи на отключение рабочего трансформатора. Реле частоты РЧ1 может сработать, и при общесистемном снижении частоты, но цепи на отключение рабочего источника при этом не создастся, так как по рабочему трансформатору будет проходить ток нагрузки, и поэтому контакт реле РТ1 останется разомкнутым.

С помощью реле напряжения РН1, РН2 и реле времени РВ1 в рассматриваемой схеме осуществляется пусковой орган минимального напряжения.


Смотрите также




© 2012 - 2020 "Познавательный портал yznai-ka.ru!". Содержание, карта сайта.